坐标系旋转变换公式图解[通俗易懂]

坐标系旋转变换公式图解[通俗易懂]而您一旦用以下这图解方法,随时眼见显然,再也不会搞错。平时开发程序,免不了要对图像做各种变换处理。有的时候变换可能比较复杂,比如平移之后又旋转,旋转之后又平移,又缩放。直接用公式计算,不但复杂,而

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

而您一旦用以下这图解方法,随时眼见显然,再也不会搞错。

 

坐标系旋转变换公式图解[通俗易懂]

 

 

平时开发程序,免不了要对图像做各种变换处理。有的时候变换可能比较复杂,比如平移之后又旋转,旋转之后又平移,又缩放。

直接用公式计算,不但复杂,而且效率低下。这时可以借助变换矩阵和矩阵乘法,将多个变换合成一个。 最后只要用一个矩阵对每个点做一次处理就可以得到想要的结果。

 另外,矩阵乘法一般有硬件支持,比如3D 图形加速卡,处理3D变换中的大量矩阵运算,比普通CPU 要快上1000倍。

下面是3类基本的2D图形变换。 

平移:

设某点向x方向移动 dx, y方向移动 dy ,[x,y]为变换前坐标, [X,Y]为变换后坐标。

则 X = x+dx;  Y = y+dy;

以矩阵表示:

                                1    0    0

[X, Y, 1] = [x, y, 1][ 0    1    0  ] ; 

                               dx  dy   1

  1    0    0

  0    1    0   即平移变换矩阵。 

  dx  dy   1 

 

 旋转:

 旋转相比平移稍稍复杂:

 设某点与原点连线和X轴夹角为b度,以原点为圆心,逆时针转过a度  , 原点与该点连线长度为R, [x,y]为变换前坐标, [X,Y]为变换后坐标。

  x = Rcos(b) ; y = Rsin(b);

  X = Rcos(a+b) = Rcosacosb – Rsinasinb = xcosa – ysina; (合角公式)

  Y = Rsin(a+b) = Rsinacosb + Rcosasinb = xsina + ycosa ;


  用矩阵表示:

                                cosa   sina  0

 [X, Y, 1] = [x, y, 1][-sina  cosa  0  ] 

                                 0        0     1

  cosa   sina  0

 -sina  cosa  0  为旋转变换矩阵。

   0       0     1 

 

 缩放

 设某点坐标,在x轴方向扩大 sx倍,y轴方向扩大 sy倍,[x,y]为变换前坐标, [X,Y]为变换后坐标。

 X = sx*x; Y = sy*y;

则用矩阵表示:

                                sx    0    0

[X, Y, 1] = [x, y, 1][ 0    sy    0  ] ; 

                                0     0     1

 sx    0    0

 0    sy    0  即为缩放矩阵。 

 0     0     1

 

 2D基本的模型视图变换,就只有上面这3种,所有的复杂2D模型视图变换,都可以分解成上述3个。

比如某个变换,先经过平移,对应平移矩阵A, 再旋转, 对应旋转矩阵B,再经过缩放,对应缩放矩阵C.

则最终变换矩阵 T = ABC. 即3个矩阵按变换先后顺序依次相乘(矩阵乘法不满足交换律,因此先后顺序一定要讲究)。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/167391.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号