数据降维_数据降维的目的

数据降维_数据降维的目的数据降维分类+PCA(主成分分析降维)+相关系数降维PCA降维(不常用)实现思路+对数据进行标准化+计算出数据的相关系数矩阵(是方阵,维度是nxn,n是特征的数量)

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

数据降维

分类

  • PCA(主成分分析降维)
  • 相关系数降维

PCA 降维(不常用)

实现思路

  • 对数据进行标准化
  • 计算出数据的相关系数矩阵(是方阵, 维度是nxn, n是特征的数量)
  • 计算出相关系数矩阵的特征值和特征向量(虽然这里说的是向量, 但是是矩阵, 这个矩阵的每一列都是特征值或者特征向量, 是nxn), 特征值是每一个特征的特征值的集合, 但是在特征向量是每一个特征的特征向量的集合, 前者我们提到的特征值和特征向量是集合
  • 多特征值进行降序排序
  • 根据已经得到的特征值计算出贡献率和累计贡献率(主要看累计贡献率, 单单一个贡献率指的是一个主成分保存的原始特征的信息, 累计贡献率是总共保存的原始特征信息)
  • 设置信息阈值T, 一般设置为0.9, 如果大于T, 则记录下来当前的位置k(k也就是我们选择的主成分的个数, 主成分就是特征, 也就是一列)
  • 根据k选择主成分对应的特征向量
  • 将标准化之后的数据(矩阵)右乘在上一步中选择出来的特征向量(在这一步得到的矩阵就是m x new_n维度的了), 得到的就是主成分的分数, 也就是降维之后的数据集合

伪代码

X = load('data.xlsx', 'B1:I11');
m = size(X, 1); % m 表示样本的数量
n = size(X, 2); % n 表示特征的数量
% 数据标准化
for i = 1:n
    SX(:, i) = (X(:, i) - mean(X(:, i))) / std(X(:, i));
end

% 计算相关系数
CM = corrcoef(SX);
% V 是特征向量, D 是特征值
[V D] = eig(CM);

% 对D特征值进行降序排序, 将结果保存到DS的第一列
for i = 1:n
    DS(:, 1) = D(n + 1 - i, n + 1 - i);
end

% 计算贡献率和累计贡献率
for i = 1:n
    % 第二列为当前单个, 每一个, 主成分的贡献率
    DS(:, 2) = D(i, 1) / sum(D(:, 1));
    % 第三列为到当前主成分的累计贡献率
    DS(:, 3) = sum(D(1:i, 1)) / sum(D(:, 1));
end

% 选择主成分
T = 0.9;
for i = 1:n
    if DS(:, i) > T
        k = i;
        break;
    end
end

% 获取主成分对应的特征向量
for i = 1:k
    PV(:, i) = V(:, n + 1 - i);
end

% 获取新的特征样本
X_new = SX * PV;

相关系数降维

  • 公式: $$r=\sum_{j=1}^{m}{{(x_{j}-\overline{x_{j}})({y_{j}-\overline{y_{j}}})}\over{std(x_{j})std(y_{j})}}$$
  • 如果|r|在[0.7, 1]时表示强线性关系, 说明x和y有很紧密的线性关系
  • 如果|r|在[0.5, 0.7]时表示中线性关系
  • 如果|r|在[0.2, 0.5]时表示低线性关系
  • 如果|r|在[0, 0.2]时表示没有关系
  • r > 0表示正相关, r < 0表示负关系
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/167593.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号