极限学习机(Extreme Learning Machine)概述

极限学习机(Extreme Learning Machine)概述摘要当今研究领域的一项事实就是,前向神经网络(feed-forwardneuralnetworks)的训练速度比人们所期望的速度要慢很多。并且,在过去的几十年中,前向神经网络在应用领域存在着很大的

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

摘要

当今研究领域的一项事实就是,前向神经网络(feed-forward neural networks)的训练速度比人们所期望的速度要慢很多。并且,在过去的几十年中,前向神经网络在应用领域存在着很大的瓶颈。导致这一现状的两个关键因素就是:

  • 神经网络的训练,大多使用基于梯度的算法,而这种算法的训练速度有限;
  • 使用这种训练算法,在迭代时,网络的所有参数都要进行更新调整。

而在2004年,由南洋理工学院黄广斌教授所提出的极限学习机器(Extreme Learning Machine,ELM)理论可以改善这种情况。最初的极限学习机是对单隐层前馈神经网络(single-hidden layer feed-forward neural networks,SLFNs)提出的一种新型的学习算法。它随机选取输入权重,并分析以决定网络的输出权重。在这个理论中,这种算法试图在学习速度上提供极限的性能。
如需转载本文,请注明出处:http://blog.csdn.net/ws_20100/article/details/49555959


极限学习机原理

ELM是一种新型的快速学习算法,对于单隐层神经网络,ELM 可以随机初始化输入权重和偏置并得到相应的隐节点输出:
这里写图片描述

对于一个单隐层神经网络(结构如上图所示),假设有

N
个任意的样本

(xj,tj)
,其中,



xj=[xj1,xj2,...,xjn]TRn  tj=[tj1,tj2,...,tjm]TRm

对于一个有



L
个隐层节点的单隐层神经网络可以表示为



i=1Lβig(wixj+bi)=oj,  j=1,2,...,N

其中,



g(x)
为激活函数,



wi=[wi1,wi2,...,win]T
是第



i
个隐层单元的输入权重,



bi
是第



i
个隐层单元的偏置,



βi=[βi1,βi2,...,βim]T
是第



i
个隐层单元的输出权重。



wixj
表示



wi




xj
的内积。

1.学习目标

单隐层神经网络学习的目标是使得输出的误差最小,可以表示为



j=1N||ojtj||=0

即存在



wi




xj




bi
使得:




i=1Lβig(wixj+bi)=tj,  j=1,2,...,N

可以矩阵表示:




Hβ=T

其中,



H
是隐层节点的输出,



β
为输出权重,



T
为期望输出。




H(w1,...,wL,b1,...,bL,x1,...,xN)=g(w1x1+b1)g(w1xN+b1)g(wLx1+bL)g(wLxN+bL)N×Lβ=β1TβLTL×m T=t1TtNTN×m

为了能够训练单隐层神经网络,我们希望得到



wi^




bi^




βi^
,使得




||H(wi^,bi^)β^T||=minw,b,β||H(wi,bi)βT||

其中,



i=1,2,...,L
,这等价于最小化损失函数




E=j=1N||i=1Lβig(wixj+bi)tj||22

2.学习方法

传统的一些基于梯度下降法的算法,可以用来求解这样的问题,但是基本的基于梯度的学习算法需要在迭代的过程中调整所有参数。而在ELM算法中, 一旦输入权重

wi
和隐层的偏置

bi
被随机确定,隐层的输出矩阵

H
就被唯一确定。训练单隐层神经网络可以转化为求解一个线性系统:

Hβ=T
。并且输出权重可以被确定



β^=HT

其中,



H
是矩阵



H




MoorePenrose
广义逆矩阵。且可证明求得的解



β^
的范数是最小的并且唯一。


实现代码

代码下载:http://download.csdn.net/detail/ws_20100/9230271

输入的训练数据,格式为一个

N×(1+n)
矩阵,其中每行代表一个样本(共有

N
行)。每行的第一个元素为该样本的“回归的期望值”或“分类的类别号”(对应于

tj
),后面的n个元素为该样本的输入数据(对应于

xjRn
)。测试数据的格式也类似。

对于回归应用,一个例子为:

[TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy] = elm('sinc_train', 'sinc_test', 0, 20, 'sig')

对于分类应用,一个例子为:

elm('diabetes_train', 'diabetes_test', 1, 20, 'sig')

这两个训练和测试集在黄广斌教授的网站上都可以下载。


参考资料:

[1] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: A new learning scheme of feedforward neural networks,” in Proc. Int. Joint Conf. Neural Networks, July 2004, vol. 2, pp. 985–990.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/167918.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 火狐的Http请求插件的安装和使用[通俗易懂]

    火狐的Http请求插件的安装和使用[通俗易懂]火狐有一个http请求插件,安装之后就可以用它来测试各种http请求了(GET/POST/PUT/DELETE)。安装步骤如下:1、打开火狐的附加组件管理器2、在左边菜单栏选择插件3、在搜索栏搜索httpRequest4、选择并安装,然后重启浏览器5、以上步骤完成后,在浏览器右上角就已经出现该插件了6、点击它即可打开,然后就可以模拟http请求了…

    2022年6月15日
    69
  • java打印数组_Java中打印数组的三种方式

    java打印数组_Java中打印数组的三种方式说明:System.out.println(array);这样是不行的,这样打印是的是数组的首地址。Arrays.toString(array);一维数组定义一个数组:int[]array={1,2,3,4,5};传统的for循环:for(inti=0;i{System.out.println(a[i]);}foreach增强循环:for(inta:array)Sys…

    2022年6月5日
    31
  • influxDb_ef mongodb

    influxDb_ef mongodbInfluxDB(时序数据库)(influx,流入,涌入),常用的一种使用场景:监控数据统计。每毫秒记录一下电脑内存的使用情况,然后就可以根据统计的数据,利用图形化界面(InfluxDBV1一般配合Grafana)制作内存使用情况的折线图;可以理解为按时间记录一些数据(常用的监控数据、埋点统计数据等),然后制作图表做统计;1、什么是InfluxDBInfluxDB是一个由InfluxDa…

    2022年10月24日
    0
  • python最新激活码2021 4月底【在线注册码/序列号/破解码】

    python最新激活码2021 4月底【在线注册码/序列号/破解码】,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月18日
    47
  • ubuntu安装python3_在Ubuntu中安装Python3

    ubuntu安装python3_在Ubuntu中安装Python3原博文2012-09-2517:15−首先,通过命令行安装Python3.2,只需要在终端中通过命令行安装即可:sudoapt-getinstallpython3一路yes。因为Ubuntu很多底层采用的是Python2.*,Python3和Python2是互相不兼容的,所以此时不能卸载Python2,需要将默认Pyth…154567相关推荐2017-12-2722:00…

    2022年6月23日
    39
  • idea2021.1.3激活码【2021免费激活】

    (idea2021.1.3激活码)这是一篇idea技术相关文章,由全栈君为大家提供,主要知识点是关于2021JetBrains全家桶永久激活码的内容IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.htmlS32PGH0SQB-eyJsaWN…

    2022年3月26日
    2.7K

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号