wing是什么_分段计价的数学题

wing是什么_分段计价的数学题给定一个由 n 行数字组成的数字梯形如下图所示。梯形的第一行有 m 个数字。从梯形的顶部的 m 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径。规则 1:从梯形的顶至底的 m 条路径互不相交。规则 2:从梯形的顶至底的 m 条路径仅在数字结点处相交。规则 3:从梯形的顶至底的 m 条路径允许在数字结点相交或边相交。对于给定的数字梯形,分别按照规则 1,规则 2,和规则 3 计算出从梯形的顶至底的 m 条路径,使这 m 条路径经过的数字总和最大。输入格式第 1

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

给定一个由 n 行数字组成的数字梯形如下图所示。

梯形的第一行有 m 个数字。

从梯形的顶部的 m 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径。

规则 1:从梯形的顶至底的 m 条路径互不相交。

规则 2:从梯形的顶至底的 m 条路径仅在数字结点处相交。

规则 3:从梯形的顶至底的 m 条路径允许在数字结点相交或边相交。
在这里插入图片描述

对于给定的数字梯形,分别按照规则 1,规则 2,和规则 3 计算出从梯形的顶至底的 m 条路径,使这 m 条路径经过的数字总和最大。

输入格式
第 1 行中有 2 个正整数 m 和 n,分别表示数字梯形的第一行有 m 个数字,共有 n 行。

接下来的 n 行是数字梯形中各行的数字。第 1 行有 m 个数字,第 2 行有 m+1 个数字,以此类推。

输出格式
将按照规则 1,规则 2,和规则 3 计算出的最大数字总和输出,每行输出一个最大总和。

数据范围
1≤n,m≤20,
梯形中的数字范围 [1,1000]。

输入样例:
2 5
2 3
3 4 5
9 10 9 1
1 1 10 1 1
1 1 10 12 1 1
输出样例:
66
75
77
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1200, M = 4000, INF = 1e8;

int m, n, S, T;
int h[N], e[M], f[M], w[M], ne[M], idx;
int q[N], d[N], pre[N], incf[N];
bool st[N];
int id[40][40], cost[40][40];

void add(int a, int b, int c, int d)
{ 
   
    e[idx] = b, f[idx] = c, w[idx] = d, ne[idx] = h[a], h[a] = idx ++ ;
    e[idx] = a, f[idx] = 0, w[idx] = -d, ne[idx] = h[b], h[b] = idx ++ ;
}

bool spfa()
{ 
   
    int hh = 0, tt = 1;
    memset(d, -0x3f, sizeof d);
    memset(incf, 0, sizeof incf);
    q[0] = S, d[S] = 0, incf[S] = INF;
    while (hh != tt)
    { 
   
        int t = q[hh ++ ];
        if (hh == N) hh = 0;
        st[t] = false;

        for (int i = h[t]; ~i; i = ne[i])
        { 
   
            int ver = e[i];
            if (f[i] && d[ver] < d[t] + w[i])
            { 
   
                d[ver] = d[t] + w[i];
                pre[ver] = i;
                incf[ver] = min(f[i], incf[t]);
                if (!st[ver])
                { 
   
                    q[tt ++ ] = ver;
                    if (tt == N) tt = 0;
                    st[ver] = true;
                }
            }
        }
    }
    return incf[T] > 0;
}

int EK()
{ 
   
    int cost = 0;
    while (spfa())
    { 
   
        int t = incf[T];
        cost += t * d[T];
        for (int i = T; i != S; i = e[pre[i] ^ 1])
        { 
   
            f[pre[i]] -= t;
            f[pre[i] ^ 1] += t;
        }
    }
    return cost;
}

int main()
{ 
   
    int cnt = 0;
    scanf("%d%d", &m, &n);
    S = ++ cnt;
    T = ++ cnt;
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m + i - 1; j ++ )
        { 
   
            scanf("%d", &cost[i][j]);
            id[i][j] = ++ cnt;
        }

    // 规则1
    memset(h, -1, sizeof h), idx = 0;
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m + i - 1; j ++ )
        { 
   
            add(id[i][j] * 2, id[i][j] * 2 + 1, 1, cost[i][j]);
            if (i == 1) add(S, id[i][j] * 2, 1, 0);
            if (i == n) add(id[i][j] * 2 + 1, T, 1, 0);
            if (i < n)
            { 
   
                add(id[i][j] * 2 + 1, id[i + 1][j] * 2, 1, 0);
                add(id[i][j] * 2 + 1, id[i + 1][j + 1] * 2, 1, 0);
            }
        }
    printf("%d\n", EK());

    // 规则2
    memset(h, -1, sizeof h), idx = 0;
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m + i - 1; j ++ )
        { 
   
            add(id[i][j] * 2, id[i][j] * 2 + 1, INF, cost[i][j]);
            if (i == 1) add(S, id[i][j] * 2, 1, 0);
            if (i == n) add(id[i][j] * 2 + 1, T, INF, 0);
            if (i < n)
            { 
   
                add(id[i][j] * 2 + 1, id[i + 1][j] * 2, 1, 0);
                add(id[i][j] * 2 + 1, id[i + 1][j + 1] * 2, 1, 0);
            }
        }
    printf("%d\n", EK());

    // 规则3
    memset(h, -1, sizeof h), idx = 0;
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m + i - 1; j ++ )
        { 
   
            add(id[i][j] * 2, id[i][j] * 2 + 1, INF, cost[i][j]);
            if (i == 1) add(S, id[i][j] * 2, 1, 0);
            if (i == n) add(id[i][j] * 2 + 1, T, INF, 0);
            if (i < n)
            { 
   
                add(id[i][j] * 2 + 1, id[i + 1][j] * 2, INF, 0);
                add(id[i][j] * 2 + 1, id[i + 1][j + 1] * 2, INF, 0);
            }
        }
    printf("%d\n", EK());

    return 0;
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/169074.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Mac上的抓包工具Charles

    Mac上的抓包工具Charles今天就来看一下Mac上如何进行抓包,之前有一篇文章介绍了使用Fidder进行抓包http://blog.csdn.net/jiangwei0910410003/article/details/19806999不过可惜的是,Fidder使用C#开发的,所以就不能在Mac上使用了,不过还有另外一个抓包神器,就是Charles,它是Java开发的,所以跨平台,不仅可以在Mac上使

    2022年5月9日
    52
  • k8s中存在很多为Evicted状态的Pod

    k8s中存在很多为Evicted状态的Pod背景在查看k8s的环境的时候,突然发现存在n多个pod状态为Evicted。差不多得有几百个。解决同事愉快的丢了个链接给我,让我自己看一波:Whatwillhappentoevictedpodsinkubernetes?查看了一下pod的信息。结果发现是磁盘满了。kubectldescribepod{pode_name}-n{namespace}但是得手动删除Evicted状态的podkubectlgetpods–all-namespaces-ojson

    2022年5月16日
    48
  • tail命令用法举例

    tail命令用法举例tail命令从指定点开始将文件写到标准输出.tail-ffilename可以方便的查阅正在改变的日志文件,会把filename里最新的内容显示在屏幕上1.命令格式:tail[必要参数][选择参数][文件]  2.命令功能:用于显示指定文件末尾内容,不指定文件时,作为输入信息进行处理。常用查看日志文件。3.命令参数:-f 循环读取-q 不显示文件名-v 显示文件…

    2022年6月4日
    65
  • batchnorm原理及代码详解(笔记2)

    batchnorm原理及代码详解(笔记2)Batchnorm原理详解前言:Batchnorm是深度网络中经常用到的加速神经网络训练,加速收敛速度及稳定性的算法,可以说是目前深度网络必不可少的一部分。本文旨在用通俗易懂的语言,对深度学习的常用算法–batchnorm的原理及其代码实现做一个详细的解读。本文主要包括以下几个部分。Batchnorm主要解决的问题 Batchnorm原理解读 Batchnorm的优点 Batc…

    2022年5月28日
    34
  • CTR预估算法之FM, FFM, DeepFM及实践

    CTR预估算法之FM, FFM, DeepFM及实践目录目录CTR预估综述FactorizationMachines(FM)算法原理代码实现Field-awareFactorizationMachines(FFM)算法原理代码实现DeepFM算法原理代码实现参考文献CTR预估综述点击率(Clickthroughrate)是点击特定链接的用户与查看页面,电子邮…

    2022年6月12日
    37
  • Hmily 源码解析(一)

    Hmily 源码解析(一)第一次看源码,也是第一次写分析源码的博文,写的不足之处希望多见谅。Hmily是分布式事务框架,基于TCC分布式事务概念。关于TCC概念我这边就不复述了,本博文基于对TCC概念有了解的基础上解析Hmily框架的实现。我计划将从两个维度进行分析,一个是业务流转的过程,通过状态的流转,方法调用来分析Hmily。另一个是从类功能的角度分析Hmily。主要以业务流转为主,类功能为辅解析Hmily的实…

    2022年5月11日
    35

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号