python社交网络分析_python编程:从入门到实践

python社交网络分析_python编程:从入门到实践NLP之情感分析:基于python编程(jieba库)实现中文文本情感分析(得到的是情感评分)输出结果1、测试对象data1=’今天上海的天气真好!我的心情非常高兴!如果去旅游的话我会非常兴奋!和你一起去旅游我会更加幸福!’data2=’今天上海天气真差,非常讨厌下雨,把我冻坏了,心情太不高兴了,不高兴,我真的很生气!’data3=’美国华裔科学家,祖籍江苏扬州市高邮县,…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

NLP之情感分析:基于python编程(jieba库)实现中文文本情感分析(得到的是情感评分)

 

 

 

 

目录

输出结果

设计思路

相关资料

1、关于代码

2、关于数据集

关于留言

1、留言内容的注意事项

2、如何留言?

2.1、第一种方法——在对应的博客下留言

2.2、备用第二种方法——论坛发帖

后续补充发放资料的说明

主要部分代码实现


 

 

输出结果

1、测试对象
data1= ‘今天上海的天气真好!我的心情非常高兴!如果去旅游的话我会非常兴奋!和你一起去旅游我会更加幸福!’
data2= ‘今天上海天气真差,非常讨厌下雨,把我冻坏了,心情太不高兴了,不高兴,我真的很生气!’
data3= ‘美国华裔科学家,祖籍江苏扬州市高邮县,生于上海,斯坦福大学物理系,电子工程系和应用物理系终身教授!’

2、输出结果
很明显,data1情感更加积极!data2情感消极!data3情感中等!

[[240.0, 104.0, 8.3, 3.6, 8.0, 2.4]]
[[0.0, 134.0, 0.0, 4.8, 0.0, 3.2]]
[[2, 66, 0.1, 3.3, 0.4, 1.7]]
[[2, 2, 0.1, 0.1, 0.4, 0.4]]

 

设计思路

后期更新……

 

 

相关资料

1、关于代码

NLP之情感分析:基于python编程(jieba库)实现中文文本情感分析(得到的是情感评分)之全部代码
 

2、关于数据集

如需数据集,请留言向博主索取。
:当前为学生身份的网友,可留言向博主索取。非学生身份的社会人士,请靠积分下载!

python社交网络分析_python编程:从入门到实践

python社交网络分析_python编程:从入门到实践

 

 

关于留言

1、留言内容的注意事项

  • 1、请新增评论,不要直接回复,折叠后,我容易看不到,会漏掉。
  • 2、请在前缀加一个索取资料的当天日期。
  • 3、切记要留下邮箱!!!

比如留言:“20200307,早上10.11,你好,博主,我的邮箱是,我想索取……”

 

2、如何留言?

2.1、第一种方法——在对应的博客下留言

即在本博客下直接留言即可!

 

2.2、备用第二种方法——论坛发帖

在我的论坛中发帖即可,我会及时回复。
地址:https://bbs.csdn.net/topics/395531480

 

 

后续补充发放资料的说明

此类网友,太伤人心,这位网友,一定不是大学生,当代大学生的素质肯定比这位网友高的多。

python社交网络分析_python编程:从入门到实践

 

主要部分代码实现

import jieba
import numpy as np

……


def sentiment_score_list(dataset):
    seg_sentence = dataset.split('。')

    count1 = []
    count2 = []
    for sen in seg_sentence: #循环遍历每一个评论
        segtmp = jieba.lcut(sen, cut_all=False)  #把句子进行分词,以列表的形式返回
        i = 0 #记录扫描到的词的位置
        a = 0 #记录情感词的位置
        poscount = 0 #积极词的第一次分值
        poscount2 = 0 #积极词反转后的分值
        poscount3 = 0 #积极词的最后分值(包括叹号的分值)
        negcount = 0
        negcount2 = 0
        negcount3 = 0
        for word in segtmp:
            if word in posdict:  # 判断词语是否是情感词
                poscount += 1
                c = 0
                for w in segtmp[a:i]:  # 扫描情感词前的程度词
                    if w in mostdict:
                        poscount *= 4.0
                    elif w in verydict:
                        poscount *= 3.0
                    elif w in moredict:
                        poscount *= 2.0
                    elif w in ishdict:
                        poscount *= 0.5
                    elif w in deny_word:
                        c += 1
                if judgeodd(c) == 'odd':  # 扫描情感词前的否定词数
                    poscount *= -1.0
                    poscount2 += poscount
                    poscount = 0
                    poscount3 = poscount + poscount2 + poscount3
                    poscount2 = 0
                else:
                    poscount3 = poscount + poscount2 + poscount3
                    poscount = 0
                a = i + 1  # 情感词的位置变化

            elif word in negdict:  # 消极情感的分析,与上面一致
                negcount += 1
                d = 0
                for w in segtmp[a:i]:
                    if w in mostdict:
                        negcount *= 4.0
                    elif w in verydict:
                        negcount *= 3.0
                    elif w in moredict:
                        negcount *= 2.0
                    elif w in ishdict:
                        negcount *= 0.5
                    elif w in degree_word:
                        d += 1
                if judgeodd(d) == 'odd':
                    negcount *= -1.0
                    negcount2 += negcount
                    negcount = 0
                    negcount3 = negcount + negcount2 + negcount3
                    negcount2 = 0
                else:
                    negcount3 = negcount + negcount2 + negcount3
                    negcount = 0
                a = i + 1
            elif word == '!' or word == '!':  ##判断句子是否有感叹号
                for w2 in segtmp[::-1]:  # 扫描感叹号前的情感词,发现后权值+2,然后退出循环
                    if w2 in posdict or negdict:
                        poscount3 += 2
                        negcount3 += 2
                        break
            i += 1 # 扫描词位置前移


            # 以下是防止出现负数的情况
            pos_count = 0
            neg_count = 0
            if poscount3 < 0 and negcount3 > 0:
                neg_count += negcount3 - poscount3
                pos_count = 0
            elif negcount3 < 0 and poscount3 > 0:
                pos_count = poscount3 - negcount3
                neg_count = 0
            elif poscount3 < 0 and negcount3 < 0:
                neg_count = -poscount3
                pos_count = -negcount3
            else:
                pos_count = poscount3
                neg_count = negcount3

            count1.append([pos_count, neg_count])
        count2.append(count1)
        count1 = []

    return count2

def sentiment_score(senti_score_list):
    score = []
    for review in senti_score_list:
        score_array = np.array(review)
        Pos = np.sum(score_array[:, 0])
        Neg = np.sum(score_array[:, 1])
        AvgPos = np.mean(score_array[:, 0])
        AvgPos = float('%.1f'%AvgPos)
        AvgNeg = np.mean(score_array[:, 1])
        AvgNeg = float('%.1f'%AvgNeg)
        StdPos = np.std(score_array[:, 0])
        StdPos = float('%.1f'%StdPos)
        StdNeg = np.std(score_array[:, 1])
        StdNeg = float('%.1f'%StdNeg)
        score.append([Pos, Neg, AvgPos, AvgNeg, StdPos, StdNeg])
    return score



data1= '今天上海的天气真好!我的心情非常高兴!如果去旅游的话我会非常兴奋!和你一起去旅游我会更加幸福!'
data2= '今天上海天气真差,非常讨厌下雨,把我冻坏了,心情太不高兴了,不高兴,我真的很生气!'
data3= '美国华裔科学家,祖籍江苏扬州市高邮县,生于上海,斯坦福大学物理系,电子工程系和应用物理系终身教授!'
print(sentiment_score(sentiment_score_list(data1)))
print(sentiment_score(sentiment_score_list(data2)))
print(sentiment_score(sentiment_score_list(data3)))

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/169261.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • vue自定义组件封装_vue组件的双向绑定实现

    vue自定义组件封装_vue组件的双向绑定实现vue组件封装,vueelementui组件封装,vue图片上传,elementui图片上传

    2022年9月23日
    4
  • css中的clear_html clear用法

    css中的clear_html clear用法之前一直不明白clear的意义何在,一直以为clear就是去掉元素本身都浮动属性(即float:none)。最近再次接触到clear才弄明白clear的本来意义。下面直接看实例:1.没有清除浮动.div1{float:left;

    2025年11月1日
    2
  • [Java基础]StringUtils.join()方法与String.join()方法的使用

    [Java基础]StringUtils.join()方法与String.join()方法的使用StringUtils.join()和String.join()用途:将数组或集合以某拼接符拼接到一起形成新的字符串。1.StringUtils.join()方法:(1)使用前需先引入common-lang3的jar包,可去官网下载:apache官网下载页面(2)方法如下图:(3)基本上此方法需传入2个参数,第一个参数是传入一个任意类型数组或集合,第二个参数是拼接符。…

    2022年6月9日
    57
  • 十大气势背景音乐(适合战队,广告招商会场用)

    十大气势背景音乐(适合战队,广告招商会场用)

    2021年11月17日
    327
  • PCB设计中的20H原则

    “20H原则”是指要确保电源平面边缘比地平面(0V参考面)边缘至少缩进相当于两个平面之间间距的20倍,其中H就是指电源平面与地平面之间的距离,如下图。为什么需要20H原则?在高速PCB中,通常电源平面和地平面间相互耦合RF能量成为边缘磁通泄露情况,而且RF能量(RF电流)会沿着PCB边缘辐射出去,为了减少这种耦合效应,所有的电源平面物理尺寸都要比最近邻的地平面尺寸小20H。补充…

    2022年4月5日
    68
  • java中hashcode的用法_java底层原理面试题

    java中hashcode的用法_java底层原理面试题1.HashCode的特性(1)HashCode的存在主要是用于查找的快捷性,如Hashtable,HashMap等,HashCode经常用于确定对象的存储地址;(2)如果两个对象相同,equals方法一定返回true,并且这两个对象的HashCode一定相同;(3)两个对象的HashCode相同,并不一定表示两个对象就相同,即equals()不一定为true,只能说明这两…

    2025年10月8日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号