如何进入tty_ffmpeg编译

如何进入tty_ffmpeg编译1.我是用的Ubuntu11.102.必须装的软件,否则后面编译会出错的:①ncurses-devel必须的②texinfo(就是缺少makeinfo命令不然编译glibc会出错,可以看到出现缺少makeinfo命令的提示)③gawk(不是mawk,不然编译glibc会出错)错误如下:mawk: scripts/gen-sorted.awk:line19:re

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

1. 我是用的Ubuntu 11.10

2. 必须装的软件,否则后面编译会出错的:

① ncurses-devel必须的

② texinfo(就是缺少makeinfo命令不然编译glibc会出错,可以看到出现缺少makeinfo命令的提示)

③ gawk(不是mawk,不然编译glibc会出错)错误如下:

mawk: scripts/gen-sorted.awk: line 19: regular expression compile failed (bad class — [], [^] or [)
/[^
mawk: scripts/gen-sorted.awk: line 19: syntax error at or near ]
mawk: scripts/gen-sorted.awk: line 19: runaway regular expression /, “”, subd …

3. 修改下载源

make dload时有些软件的源访问比较慢比如gcc、glibc等,可能导致下载慢或下载后文件不完整,导致MD5校验错误。

可以找一些国内的比较快的镜像源代替,比如gcc、glibc可以从http://mirrors.ustc.edu.cn/gnu下载

4. 最后,如果有错误就慢慢检查对应目录下的log吧。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/169868.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • android签名命令行,Android系统签名位置及命令

    android签名命令行,Android系统签名位置及命令app需要使用系统的权限在AndroidManifest.xml中声明了系统全下申明了系统权限android:sharedUserId=”android.uid.system”1.找到平台签名文件“platform.pk8”和“platform.x509.pem”文件位置android/build/target/product/security/2.签名工具“signapk.jar”位置…

    2022年6月21日
    25
  • java编译过程_Java编译运行过程

    java编译过程_Java编译运行过程Java编译运行过程在上一篇文章中,我们了解了第一个Java入门程序,以及如何编译和运行第一个Java程序。本文主要了解以下编译和运行Java程序时会发生什么。此外,我们还会分析一些常见的问题。1Java程序编译过程在编译时,Java文件由Java编译器(它不与底层操作系统交互)将Java代码转换为字节码(.class)。2Java程序运行过程在Java程序运行中,会执行以下步骤:类加载器(C…

    2022年4月30日
    40
  • 图书推荐:《Java程序员修炼之道》 Skip to end of metadata

    图书推荐:《Java程序员修炼之道》 Skip to end of metadata

    2021年5月11日
    224
  • 动态dns有什么好处_动态DNS设置

    动态dns有什么好处_动态DNS设置1.核心思想配置动态DNS服务器的核心思想是:在DNS服务器上运行多个BIND,每个BIND为来自不同区域的用户提供解析,因此每个BIND都应具有不同的配置文件和域文件,并且分别监听在不同的端口。在

    2022年8月5日
    5
  • L3-023 计算图(链式求导+bfs拓扑|dfs)「建议收藏」

    L3-023 计算图(链式求导+bfs拓扑|dfs)「建议收藏」原题链接“计算图”(computational graph)是现代深度学习系统的基础执行引擎,提供了一种表示任意数学表达式的方法,例如用有向无环图表示的神经网络。 图中的节点表示基本操作或输入变量,边表示节点之间的中间值的依赖性。 例如,下图就是一个函数 ( 的计算图。现在给定一个计算图,请你根据所有输入变量计算函数值及其偏导数(即梯度)。 例如,给定输入,,上述计算图获得函数值 (;并且根据微分链式法则,上图得到的梯度 ∇。知道你已经把微积分忘了,所以这里只要求你处理几个简单的算子:加法、减法、乘

    2022年8月8日
    11
  • Initialization failed for ‘https://start.spring.io’ Please check URL, network and proxy settings.

    Initialization failed for ‘https://start.spring.io’ Please check URL, network and proxy settings.

    2021年10月1日
    54

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号