python fill函数填充_python开始填充

python fill函数填充_python开始填充摘要:这篇Python开发技术栏目下的“pythondataframe向下向上填充,fillna和ffill的方法”,介绍的技术点是“DataFrame、fillna、Python、ffill、_和__、填充”,希望对大家开发技术学习和问题解决有帮助。今天小编就为大家分享一篇pythondataframe向下向上填充,fillna和ffill的方法,具有很好的参考价值,希望对大家有所帮助。一起…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

摘要:这篇Python开发技术栏目下的“python dataframe向下向上填充,fillna和ffill的方法”,介绍的技术点是“DataFrame、fillna、Python、ffill、_和__、填充”,希望对大家开发技术学习和问题解决有帮助。今天小编就为大家分享一篇python dataframe向下向上填充,fillna和ffill的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

首先新建一个dataframe:

In[8]: df = pd.DataFrame({‘name’:list(‘ABCDA’),’house’:[1,1,2,3,3],’date’:[‘2010-01-01′,’2010-06-09′,’2011-12-03′,’2011-04-05′,’2012-03-23’]})

In[9]: df

Out[9]:

date house name

0 2010-01-01 1 A

1 2010-06-09 1 B

2 2011-12-03 2 C

3 2011-04-05 3 D

4 2012-03-23 3 A

将date列改为时间类型:

In[12]: df.date = pd.to_datetime(df.date)

数据的含义是这样的,我们有ABCD四个人的数据,已知A在2010-01-01的时候,名下有1套房,B在2010-06-09的时候,名下有1套房,C在2011-12-03的时候,有2套房,D在2011-04-05的时候有3套房,A在2012-02-23的时候,数据更新了,有两套房。

要求在有姓名和时间的情况下,能给出其名下有几套房:

比如A在2010-01-01与2012-03-23期间任意一天,都应该是1套房,在2012-03-23之后,都是3套房。

我们使用pandas的fillna方法,选择ffill。

首先我们获得一个2010-01-01到2017-12-01的dataframe

In[14]: time_range = pd.DataFrame(

pd.date_range(‘2010-01-01′,’2017-12-01′,freq=’D’), columns=[‘date’]).set_index(“date”)

In[15]: time_range

Out[15]:

Empty DataFrame

Columns: []

Index: [2010-01-01 00:00:00, 2010-01-02 00:00:00, 2010-01-03 00:00:00, 2010-01-04 00:00:00, 2010-01-05 00:00:00, 2010-01-06 00:00:00, 2010-01-07 00:00:00, 2010-01-08 00:00:00, 2010-01-09 00:00:00, 2010-01-10 00:00:00, 2010-01-11 00:00:00, 2010-01-12 00:00:00, 2010-01-13 00:00:00, 2010-01-14 00:00:00, 2010-01-15 00:00:00, 2010-01-16 00:00:00, 2010-01-17 00:00:00, 2010-01-18 00:00:00, 2010-01-19 00:00:00, 2010-01-20 00:00:00, 2010-01-21 00:00:00, 2010-01-22 00:00:00, 2010-01-23 00:00:00, 2010-01-24 00:00:00, 2010-01-25 00:00:00, 2010-01-26 00:00:00, 2010-01-27 00:00:00, 2010-01-28 00:00:00, 2010-01-29 00:00:00, 2010-01-30 00:00:00, 2010-01-31 00:00:00, 2010-02-01 00:00:00, 2010-02-02 00:00:00, 2010-02-03 00:00:00, 2010-02-04 00:00:00, 2010-02-05 00:00:00, 2010-02-06 00:00:00, 2010-02-07 00:00:00, 2010-02-08 00:00:00, 2010-02-09 00:00:00, 2010-02-10 00:00:00, 2010-02-11 00:00:00, 2010-02-12 00:00:00, 2010-02-13 00:00:00, 2010-02-14 00:00:00, 2010-02-15 00:00:00, 2010-02-16 00:00:00, 2010-02-17 00:00:00, 2010-02-18 00:00:00, 2010-02-19 00:00:00, 2010-02-20 00:00:00, 2010-02-21 00:00:00, 2010-02-22 00:00:00, 2010-02-23 00:00:00, 2010-02-24 00:00:00, 2010-02-25 00:00:00, 2010-02-26 00:00:00, 2010-02-27 00:00:00, 2010-02-28 00:00:00, 2010-03-01 00:00:00, 2010-03-02 00:00:00, 2010-03-03 00:00:00, 2010-03-04 00:00:00, 2010-03-05 00:00:00, 2010-03-06 00:00:00, 2010-03-07 00:00:00, 2010-03-08 00:00:00, 2010-03-09 00:00:00, 2010-03-10 00:00:00, 2010-03-11 00:00:00, 2010-03-12 00:00:00, 2010-03-13 00:00:00, 2010-03-14 00:00:00, 2010-03-15 00:00:00, 2010-03-16 00:00:00, 2010-03-17 00:00:00, 2010-03-18 00:00:00, 2010-03-19 00:00:00, 2010-03-20 00:00:00, 2010-03-21 00:00:00, 2010-03-22 00:00:00, 2010-03-23 00:00:00, 2010-03-24 00:00:00, 2010-03-25 00:00:00, 2010-03-26 00:00:00, 2010-03-27 00:00:00, 2010-03-28 00:00:00, 2010-03-29 00:00:00, 2010-03-30 00:00:00, 2010-03-31 00:00:00, 2010-04-01 00:00:00, 2010-04-02 00:00:00, 2010-04-03 00:00:00, 2010-04-04 00:00:00, 2010-04-05 00:00:00, 2010-04-06 00:00:00, 2010-04-07 00:00:00, 2010-04-08 00:00:00, 2010-04-09 00:00:00, 2010-04-10 00:00:00, …]

[2892 rows x 0 columns]

然后用上上篇博客中提到的pivot_table将原本的df转变之后,与time_range进行merger操作。

In[16]: df = pd.pivot_table(df, columns=’name’, index=’date’)

In[17]: df

Out[17]:

house

name A B C D

date

2010-01-01 1.0 NaN NaN NaN

2010-06-09 NaN 1.0 NaN NaN

2011-04-05 NaN NaN NaN 3.0

2011-12-03 NaN NaN 2.0 NaN

2012-03-23 3.0 NaN NaN NaN

In[18]: df = df.merge(time_range,how=”right”, left_index=True, right_index=True)

然后再进行向下填充操作:

In[20]: df = df.fillna(method=’ffill’)

最后:

df = df.stack().reset_index()

结果太长,这里就不粘贴了。如果想向上填充,可选择method = ‘bfill‘

以上这篇python dataframe向下向上填充,fillna和ffill的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持Java大数据社区。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/170031.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • SchedulerFactoryBean[通俗易懂]

    SchedulerFactoryBean[通俗易懂]<?xmlversion="1.0"encoding="UTF-8"?><beans><beanid="scheduler"class="org.springframework.scheduling.quartz.SchedulerFactoryBean"lazy-init="false"><prope

    2022年5月10日
    45
  • synchronized偏向锁和轻量级锁_线程synchronized用法

    synchronized偏向锁和轻量级锁_线程synchronized用法今天简单了解了一下java轻量级锁和重量级锁以及偏向锁。看了看这篇文章觉得写的不错原文链接java 偏向锁、轻量级锁及重量级锁synchronized原理Java对象头与Monitorjava对象头是实现synchronized的锁对象的基础,synchronized使用的锁对象是存储在Java对象头里的。对象头包含两部分:Mark Word 和 Class Metadata Address其中Mark Word在默认情况下存储着对象的HashCode、分代年龄、锁标记位等以下是32位JVM的

    2022年8月9日
    8
  • PLsql 永久注册码「建议收藏」

    PLsql 永久注册码「建议收藏」 注册码:ProductCode:4t46t6vydkvsxekkvf3fjnpzy5wbuhphqzserialNumber:601769password:xs374ca  原文链接:https://blog.csdn.net/sinat_33142609/article/details/72540025

    2022年7月24日
    550
  • printf的题目

    以前学习于渊老师的《自己动手写操作系统》一书的时候,也自己实现过printf,不过那是比较简单的版本。最近看《程序员面试宝典》,做到这么一道题目:#include<stdio.h>int

    2021年12月25日
    38
  • Python+opencv调用摄像头获取视频保存到本地并应用到YOLO中保存视频检测后的结果

    Python+opencv调用摄像头获取视频保存到本地并应用到YOLO中保存视频检测后的结果文章目录前言读写视频流获取摄像头:写入视频:完整的调用摄像头并保存视频代码应用到YOLO中总结前言之前的文章介绍了如何调用摄像头间隔拍照并保存图片(文章链接:Python+OpenCV调用摄像头固定间隔时间拍照并保存到本地同时应用到YOLO中检测目标),这篇文章再介绍一下如何调用摄像头并保存视频。读写视频流获取摄像头:capture=cv2.VideoCapture(0)ref,frame=capture.read()前文介绍过,cv2.VideoCapture()获取摄像头

    2022年6月22日
    28
  • 常见服务器默认管理口地址[通俗易懂]

    常见服务器默认管理口地址[通俗易懂]+++++++++++++++++++++++++++++++++++++++++++++++++++++++++HP管理口:ILO1》默认用户/密码:Administrator/password2》HP以前管理口登陆MP卡通过网线连接MP卡的RJ-45口,通过telnet方式登录,默认用户/密码:Admin/Admin3》++++++++++++++++++

    2022年5月22日
    216

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号