aero是什么意思啊_自动驾驶视觉算法

aero是什么意思啊_自动驾驶视觉算法数据集介绍aeroscapes数据集下载链接AeroScapes航空语义分割基准包括使用商用无人机在5到50米的高度范围内捕获的图像。该数据集提供3269张720p图像和11个类别的真实掩码。数据加载dataloder写法(基于pytorch)由于该数据集提供了掩码图,因此不需要进行掩码图转换。下载完成后,文件结构如下:ImageSets文件夹:存放了两个txt文件,划分了训练集和验证集。JPEGImages文件夹:存放了RGB图像。SegmentationClass

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

数据集介绍

aeroscapes数据集下载链接
AeroScapes 航空语义分割基准包括使用商用无人机在 5 到 50 米的高度范围内捕获的图像。该数据集提供 3269 张 720p 图像和 11 个类别的真实掩码。
在这里插入图片描述

获取Class类别及其RGB值

由于本数据集未提供类别ID对应的RGB值,可以通过以下代码获取:

from PIL import Image
import os

base_dir = "Visualizations/"
base_seg_dir = "SegmentationClass/"
files = os.listdir(base_dir)
list1 = []
for file in files:
    img_dir = base_dir + file
    segimg_dir = base_seg_dir + file
    im = Image.open(img_dir)
    segimg = Image.open(segimg_dir)
    pix = im.load()
    pix_seg = segimg.load() 
    width = im.size[0]
    height = im.size[1]
    for x in range(width):
        for y in range(height):
            r, g, b = pix[x, y]
            c = pix_seg[x,y]
            if [c,r,g,b] not in list1:
                list1.append([c,r,g,b])
                print(list1)
print(list1)

结果如下:

Person [192,128,128]--------------1
Bike [0,128,0]----------------------2
Car [128,128,128]----------------- 3
Drone [128,0,0]--------------------4
Boat [0,0,128]--------------------- 5
Animal [192,0,128]---------------- 6
Obstacle [192,0,0]------------------7
Construction [192,128,0]-----------8
Vegetation [0,64,0]-----------------9
Road [128,128,0]-------------------10
Sky [0,128,128]---------------------11

数据加载dataloder写法(基于pytorch)

由于该数据集提供了掩码图,因此不需要进行掩码图转换。下载完成后,文件结构如下:

  • ImageSets文件夹:存放了两个txt文件,划分了训练集和验证集。
  • JPEGImages文件夹:存放了RGB图像。
  • SegmentationClass:存放了标签的掩模图。
  • Visualizations:存放了标签图像。aero是什么意思啊_自动驾驶视觉算法
    为了使用此数据集,需要根据划分好的txt文件读取图像,然后采用Pytorch的Dataloader模块进行加载。具体代码:
''' dataset.py '''
import torch
import torch.utils.data
import numpy as np
import cv2
import os

# txt_file = open("ImageSets/trn.txt")
# train_filenames = txt_file.readlines()
# for train_filename in train_filenames:
# print(train_filename)

class DatasetTrain(torch.utils.data.Dataset):
    def __init__(self, base_dir):

        
        self.base_dir = base_dir
        self.img_dir = base_dir + "JPEGImages/"
        self.label_dir = base_dir + "SegmentationClass/"

        self.new_img_h = 512
        self.new_img_w = 1024

        self.examples = []
        txt_path = self.base_dir + "ImageSets/trn.txt"
        txt_file = open(txt_path)
        train_filenames = txt_file.readlines()

        train_img_dir_path = self.img_dir
        label_img__dir_path = self.label_dir

        for train_filename in train_filenames:
            train_filename=train_filename.strip('\n')
            img_path = train_img_dir_path + train_filename + '.jpg'
            label_img_path = label_img__dir_path + train_filename + '.png'
            example = { 
   }
            example["img_path"] = img_path
            example["label_img_path"] = label_img_path
            self.examples.append(example)

        self.num_examples = len(self.examples)

    def __getitem__(self, index):
        example = self.examples[index]

        img_path = example["img_path"]
        print(img_path)
        img = cv2.imread(img_path, -1) 
        img = cv2.resize(img, (self.new_img_w, self.new_img_h),
                         interpolation=cv2.INTER_NEAREST) 
        label_img_path = example["label_img_path"]
        print(label_img_path)
        label_img = cv2.imread(label_img_path, cv2.IMREAD_GRAYSCALE) 
        label_img = cv2.resize(label_img, (self.new_img_w, self.new_img_h),
                               interpolation=cv2.INTER_NEAREST) 

        # normalize the img (with the mean and std for the pretrained ResNet):
        img = img/255.0
        img = img - np.array([0.485, 0.456, 0.406])
        img = img/np.array([0.229, 0.224, 0.225]) 
        img = np.transpose(img, (2, 0, 1)) 
        img = img.astype(np.float32)

        # convert numpy -> torch:
        img = torch.from_numpy(img) 
        label_img = torch.from_numpy(label_img) 

        return (img, label_img)

    def __len__(self):
        return self.num_examples

class DatasetVal(torch.utils.data.Dataset):
    def __init__(self, base_dir):

        
        self.base_dir = base_dir
        self.img_dir = base_dir + "JPEGImages/"
        self.label_dir = base_dir + "SegmentationClass/"

        self.new_img_h = 512
        self.new_img_w = 1024

        self.examples = []
        txt_path = self.base_dir + "ImageSets/val.txt"
        txt_file = open(txt_path)
        valid_filenames = txt_file.readlines()

        train_img_dir_path = self.img_dir
        label_img__dir_path = self.label_dir

        for valid_filename in valid_filenames:
            valid_filename=valid_filename.strip('\n')
            img_path = train_img_dir_path + valid_filename + '.jpg'
            label_img_path = label_img__dir_path + valid_filename + '.png'
            example = { 
   }
            example["img_path"] = img_path
            example["label_img_path"] = label_img_path
            self.examples.append(example)

        self.num_examples = len(self.examples)

    def __getitem__(self, index):
        example = self.examples[index]

        img_path = example["img_path"]
        print(img_path)
        img = cv2.imread(img_path, -1) 
        img = cv2.resize(img, (self.new_img_w, self.new_img_h),
                         interpolation=cv2.INTER_NEAREST) 
        label_img_path = example["label_img_path"]
        print(label_img_path)
        label_img = cv2.imread(label_img_path, cv2.IMREAD_GRAYSCALE) 
        label_img = cv2.resize(label_img, (self.new_img_w, self.new_img_h),
                               interpolation=cv2.INTER_NEAREST) 

        # normalize the img (with the mean and std for the pretrained ResNet):
        img = img/255.0
        img = img - np.array([0.485, 0.456, 0.406])
        img = img/np.array([0.229, 0.224, 0.225]) 
        img = np.transpose(img, (2, 0, 1)) 
        img = img.astype(np.float32)

        # convert numpy -> torch:
        img = torch.from_numpy(img) 
        label_img = torch.from_numpy(label_img) 

        return (img, label_img)

    def __len__(self):
        return self.num_examples


''' 以下代码为测试功能,正式使用时需要注释掉 '''

if __name__ == "__main__":
    base_dir = "aeroscapes/"
    train_dataset = DatasetTrain(base_dir = base_dir)
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                            batch_size=3, shuffle=True,
                                            num_workers=1,drop_last=True)
    val_dataset = DatasetVal(base_dir = base_dir)
    val_loader = torch.utils.data.DataLoader(dataset=val_dataset,
                                            batch_size=3, shuffle=True,
                                            num_workers=1,drop_last=True)
    from torch.autograd import Variable
    for step, (imgs, label_imgs) in enumerate(train_loader):
        imgs = Variable(imgs).cuda() # (shape: (batch_size, 3, img_h, img_w))
        print(imgs.shape)
        label_imgs = Variable(label_imgs.type(torch.LongTensor)).cuda() # (shape: (batch_size, img_h, img_w))
        print(label_imgs.shape)
    for step, (imgs, label_imgs) in enumerate(val_loader):
        imgs = Variable(imgs).cuda() # (shape: (batch_size, 3, img_h, img_w))
        print(imgs.shape)
        label_imgs = Variable(label_imgs.type(torch.LongTensor)).cuda() # (shape: (batch_size, img_h, img_w))
        print(label_imgs.shape)

使用前根据自己数据集存放的路径修改base_dir 变量。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/170584.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • tqdm模块[通俗易懂]

    tqdm模块[通俗易懂]tqdm是Python进度条库。tqdm库下面有2个类我们经常使用:1.2.可以在Python长循环中添加一个进度提示信息用法:tqdm(iterator)trange(i)是

    2022年8月6日
    7
  • 史上最全ASCII码对照表0-255(%d)

    史上最全ASCII码对照表0-255(%d)十进制代码 十六进制代码 MCS字符或缩写 DEC多国字符名 ASCII控制字符1 0 0 NUL 空字符 1 1 SOH 标…

    2022年6月24日
    55
  • linux镜像文件没有gho,【iso文件中没有gho文件】iso变gho_iso文件里没有gho-系统城…

    linux镜像文件没有gho,【iso文件中没有gho文件】iso变gho_iso文件里没有gho-系统城…2016-05-0119:20:51  浏览量:6833gho文件是ghost系统的克隆镜像,存储着系统分区的所有文件信息,可用于安装系统,有些U盘安装方法需要把ISO镜像中的gho文件拷贝到U盘,那么gho文件在哪里呢?ISO镜像中的gho文件是哪个呢?下面系统城小编就跟大家分析一下。2016-03-0319:44:18  浏览量:18623使用U盘pe启动盘安装系统时,只需把系统gho映像…

    2022年7月12日
    16
  • c#FileStream文件读写.以及filestream,file和FileInfo的区别

    c#FileStream文件读写.以及filestream,file和FileInfo的区别//C#文件流写文件,默认追加FileMode.Append            stringmsg="okffffffffffffffff";           byte[]myByte=System.Text.Encoding.UTF8.GetBytes(msg);           using(FileStreamfsWrite=newFileStream(…

    2022年7月21日
    30
  • 磁盘分区类型和分区表的区别[通俗易懂]

    磁盘分区类型和分区表的区别[通俗易懂]任务1罗列磁盘分区的类型并做比较性介绍分类:FAT16、FAT32、NTFS、EXT2、EXT3、EXT4FAT16:磁盘分区最大只能到2GB、使用簇的大小不恰当、FAT16使用了16位的空间来表示每个扇区文件名长度有限制FAT32:相比FAT16会拥有更多的簇,更大空间容量上限为16TB根目录区(ROOT区)不再是固定区域、固定大小速度和FAT16一样快,对大磁盘利用率比FAT16好文件名长度有限制NTFS:备3个功能:错误预警功能、磁盘自我修复功能和日志功能安全性,

    2022年8月11日
    13
  • 单片机视频教程转让

    单片机视频教程转让单片机的C语言视频教程转让,本套光盘购于天祥电子,花了我200大元,如今我以60元(包快递)的价格转让。有意者请与我联系。QQ:247964971 电话:13982129248讲座从最基本电路知识开始讲起,非常详细的讲解KEIL编译器的使用,课程全部用单片机的C语言讲解,从C语言的第一个主函数MAIN讲起,一步步讲解每一个语法,每条指令的意思,即使对单片机一巧不能,对C语言一无所知,通过

    2022年5月12日
    43

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号