数据结构与算法二叉树的算法_数据结构c语言二叉树的深度

数据结构与算法二叉树的算法_数据结构c语言二叉树的深度一、什么是二叉树1.概述首先,需要了解树这种数据结构的定义:树:是一类重要的非线性数据结构,是以分支关系定义的层次结构。每个结点有零个或多个子结点;没有父结点的结点称为根结点;每一个非根结点有且

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

一、什么是二叉树

1.概述

首先,需要了解树这种数据结构的定义:

树:是一类重要的非线性数据结构,是以分支关系定义的层次结构。每个结点有零个或多个子结点;没有父结点的结点称为根结点;每一个非根结点有且只有一个父结点;除了根结点外,每个子结点可以分为多个不相交的子树

数据结构与算法二叉树的算法_数据结构c语言二叉树的深度

树的结构类似现实中的树,一个父节点有若干子节点,而一个子节点又有若干子节点,以此类推。

2.名词解释

名称 含义
根节点 树的顶端结点
父节点 若一个节点含有子节点,则这个节点称为其子节点的父节点
子节点 具有相同父节点的节点
兄弟节点 彼此都拥有同一个父节点的节点
叶子节点 即没有子节点的节点
节点的权 即节点值
路节点的度 一个节点含有的子树的个数
树的度 一棵树中,最大的节点的度称为树的度
深度 根结点到这个结点所经历的边的个数
层数 该节点的深度+1
高度 结点到叶子结点的最长路径所经历的边的个数
树高度 即根节点的高度
森林 由m(m>=0)棵互不相交的树的集合称为森林

3.二叉树

二叉树就是每个节点最多只有两颗子树的树:

数据结构与算法二叉树的算法_数据结构c语言二叉树的深度

对于二叉树有:

  • 满二叉树:所有的子节点都在最后一层,且节点总数与层数有节点总数=2^n-1

    数据结构与算法二叉树的算法_数据结构c语言二叉树的深度

  • 完全二叉树:从根节点到倒数第二层都符合满二叉树,但是最后一层节点不完全充填,叶子结点都靠左对齐

    数据结构与算法二叉树的算法_数据结构c语言二叉树的深度

二、二叉树的遍历

二叉树遍历分为三种:

  • 前序遍历: 先输出父节点,再遍历左子树和右子树
  • 中序遍历: 先遍历左子树,再输出父节点,再遍历右子树
  • 后序遍历: 先遍历左子树,再遍历右子树,最后输出父节点

可见,根据父节点输出顺序即可以判断是哪一种遍历。

1.简单代码实现

先创建节点类:

/**
 * @Author:黄成兴
 * @Date:2020-07-11 17:30
 * @Description:二叉树
 */
public class BinaryTreeNode {

    private int nodeNum;

    /**
     * 右子节点
     */
    private BinaryTreeNode right;

    /**
     * 左子节点
     */
    private BinaryTreeNode left;

    public BinaryTreeNode(int nodeNum) {
        this.nodeNum = nodeNum;
    }

    @Override
    public String toString() {
        return "BinaryTreeNode{" +
                "nodeNum=" + nodeNum +
                '}';
    }

    public int getNodeNum() {
        return nodeNum;
    }

    public void setNodeNum(int nodeNum) {
        this.nodeNum = nodeNum;
    }

    public BinaryTreeNode getRight() {
        return right;
    }

    public void setRight(BinaryTreeNode right) {
        this.right = right;
    }

    public BinaryTreeNode getLeft() {
        return left;
    }

    public void setLeft(BinaryTreeNode left) {
        this.left = left;
    }
}

实现遍历方法:

/**
 * @Author:黄成兴
 * @Date:2020-07-11 17:44
 * @Description:二叉树
 */
public class BinaryTree {

    private BinaryTreeNode root;

    public BinaryTree(BinaryTreeNode root) {
        if (root == null) {
            throw new RuntimeException("根节点不允许为空!");
        }
        this.root = root;
    }

    public void preOrder(){
        preOrder(root);
    }
    /**
     * 前序遍历
     */
    public void preOrder(BinaryTreeNode node){
        //打印节点
        System.out.println(node);
        //向左子树前序遍历
        if (node.getLeft() != null) {
            preOrder(node.getLeft());
        }
        //向右子树前序遍历
        if (node.getRight() != null) {
            preOrder(node.getRight());
        }
    }

    public void inOrder(){
        inOrder(root);
    }
    /**
     * 中序遍历
     */
    public void inOrder(BinaryTreeNode node){
        //向左子树中序遍历
        if (node.getLeft() != null) {
            inOrder(node.getLeft());
        }
        //打印节点
        System.out.println(node);
        //向右子树中序遍历
        if (node.getRight() != null) {
            inOrder(node.getRight());
        }
    }

    public void postOrder(){
        postOrder(root);
    }
    /**
     * 后序遍历
     */
    public void postOrder(BinaryTreeNode node){
        //向左子树中序遍历
        if (node.getLeft() != null) {
            postOrder(node.getLeft());
        }
        //向右子树中序遍历
        if (node.getRight() != null) {
            postOrder(node.getRight());
        }
        //打印节点
        System.out.println(node);
    }
}

2.测试

对含有7个简单的满二叉树进行遍历的结果:

数据结构与算法二叉树的算法_数据结构c语言二叉树的深度

前序遍历:
BinaryTreeNode{nodeNum=1}
BinaryTreeNode{nodeNum=2}
BinaryTreeNode{nodeNum=4}
BinaryTreeNode{nodeNum=5}
BinaryTreeNode{nodeNum=3}
BinaryTreeNode{nodeNum=6}
BinaryTreeNode{nodeNum=7}
中序遍历:
BinaryTreeNode{nodeNum=4}
BinaryTreeNode{nodeNum=2}
BinaryTreeNode{nodeNum=5}
BinaryTreeNode{nodeNum=1}
BinaryTreeNode{nodeNum=6}
BinaryTreeNode{nodeNum=3}
BinaryTreeNode{nodeNum=7}
后序遍历:
BinaryTreeNode{nodeNum=4}
BinaryTreeNode{nodeNum=5}
BinaryTreeNode{nodeNum=2}
BinaryTreeNode{nodeNum=6}
BinaryTreeNode{nodeNum=7}
BinaryTreeNode{nodeNum=3}
BinaryTreeNode{nodeNum=1}

三、二叉树的查找

大体逻辑同遍历,这里就不在赘述了,直接放代码:

/**
 * 前序查找
 * @param num
 * @param node
 * @return
 */
public BinaryTreeNode preSearch(int num,BinaryTreeNode node){
    BinaryTreeNode result = null;

    //判断当前节点是否为查找节点
    if (node.getNodeNum() == num) {
        result = node;
    }
    //判断左节点是否为空,不为空就前序查找节点
    if (node.getLeft() != null) {
        result = preSearch(num, node.getLeft());
    }
    //如果左树找到就返回
    if (result != null){
        return result;
    }
    //否则就判断并递归前序查找右树
    if (node.getRight() != null) {
        result = preSearch(num, node.getRight());
    }
    return result;
}

/**
 * 中序查找
 * @param num
 * @param node
 * @return
 */
public BinaryTreeNode inSearch(int num,BinaryTreeNode node){
    BinaryTreeNode result = null;

    //判断左节点是否为空,不为空就中序查找节点
    if (node.getLeft() != null) {
        result = inSearch(num, node.getLeft());
    }
    //如果左树找到就返回
    if (result != null){
        return result;
    }
    //如果左树未找到就判断当前节点是不是
    if (node.getNodeNum() == num) {
        result = node;
    }
    //否则就判断并递归前序查找右树
    if (node.getRight() != null) {
        result = inSearch(num, node.getRight());
    }
    return result;
}

/**
 * 后序查找
 * @param num
 * @param node
 * @return
 */
public BinaryTreeNode postSearch(int num,BinaryTreeNode node){
    BinaryTreeNode result = null;

    //判断左节点是否为空,不为空就后序查找节点
    if (node.getLeft() != null) {
        result = postSearch(num, node.getLeft());
    }
    //如果左树找到就返回
    if (result != null){
        return result;
    }

    //否则就判断并递归后序查找右树
    if (node.getRight() != null) {
        result = postSearch(num, node.getRight());
    }
    //判断右树是否找到
    if (result != null){
        return result;
    }

    //如果右树仍未找到就判断当前节点是不是
    if (node.getNodeNum() == num) {
        result = node;
    }
    return result;
}

四、二叉树的删除

对于二叉树的删除,有以下逻辑:

  • 由于树的节点和节点之间的联系是单向的,对于要删除的节点,需要找到他的父节点进行删除
  • 从根节点开始遍历节点,判断节点的左右子节点是否为目标节点
  • 如果是就删除并返回
  • 否则就持续向右或左递归,直到找到目标节点,或者将树遍历完为止
/**
 * 删除节点
 * @param num
 * @param node
 * @return
 */
public void delete(int num, BinaryTreeNode node) {
    //判断删除的是否为根节点
    if (root.getNodeNum() == num) {
        throw new RuntimeException("不允许删除根节点!");
    }
    //如果子节点就是要删除的节点
    if (node.getLeft() != null && node.getLeft().getNodeNum() == num) {
        node.setLeft(null);
        return;
    }
    if (node.getRight() != null && node.getRight().getNodeNum() == num) {
        node.setRight(null);
        return;
    }
    //否则就往左树或右树遍历直到找到或遍历完为止
    if (node.getLeft() != null) {
        delete(num, node.getLeft());
    }
    if (node.getRight() != null) {
        delete(num,node.getRight());
    }
}

五、顺序存储二叉树

一般想到二叉树都会先想到较为形象的链式存储,即用含有左右指针的节点来组成树,实际上,通过计算,也可以使用数组来表示二叉树。

可以简单的理解:顺序存储二叉树是逻辑的上一棵树,而链式存储二叉树是物理上的一棵树。

以下图的树为例:

数据结构与算法二叉树的算法_数据结构c语言二叉树的深度

假设数组为{1,2,3,4,5,6,7,},我们可以知道:

  • 下标为n的元素的左节点为:2*n+1
  • 下标为n的元素的右节点为:2*n+2
  • 下标为n的元素的父节点为:(n-1)/2

如果给顺序存储二叉树写一个前序遍历急就是这样:

/**
 * 前序遍历
 * @param index
 */
public void preOrder(int index) {
    //输出数组
    System.out.println(arr[index]);
    //向左递归
    if ((index * 2 + 1) < arr.length) {
        preOrder(index * 2 + 1);
    }
    //向右递归
    if ((index * 2 + 2) < arr.length) {
        preOrder(index * 2 + 2);
    }
}

在代码的实现上和链式二叉树是差不多的,这里就不再一一列举了。

当然,由于顺序存储二叉树的性质,当树需要排序的情况下,顺序存储二叉树就会出现空间浪费的情况:

数据结构与算法二叉树的算法_数据结构c语言二叉树的深度

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/170808.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • JS indexOf() 函数[通俗易懂]

    JS indexOf() 函数[通俗易懂]vartest=str1.indexOf(str2);//返回-1表示在str1里没有找到指定的字符串str2的内容.如果有字符串存在就返回它的下表以0开始列子:Strings1=”ahkb”;Strings2=”k”;s1.indexOf(s2)==2;;…

    2022年7月13日
    20
  • matlab 用循环求和,matlab循环求和函数[通俗易懂]

    matlab 用循环求和,matlab循环求和函数[通俗易懂]matlab求和的出错symsum是符号运算,要先用syms定义符号变量用法详见docsymsum如何用matlab解带求和函数sum的方程举个例子吧:D=[345];A=7;fsolve(@(X)sum(10.^(X-D))-A,0)则ans=3.7998就这么简单.(还想补充说明一点,fsolve中第一个变量是一个函数句柄,第二个变量matlab求和.符号运算通过符号运算把这个式子拆开什么意…

    2022年10月6日
    0
  • Apache有哪两种虚拟主机的方式_服务器如何搭建虚拟主机

    Apache有哪两种虚拟主机的方式_服务器如何搭建虚拟主机Apache虚拟主机的实现方式有3种。基于IP的虚拟主机基于端口的虚拟主机基于域名的虚拟主机配置环境系统:CentOS7.5工具:XShell6**配置准备**1.安装httpdyuminstallhttpd-y2.查看安装了内容rpm-qlhttpd|less3、配置Selinux文件,SELINUX=disabled。4、关闭防火墙s…

    2022年9月17日
    0
  • redis如何查看版本号_redis版本号

    redis如何查看版本号_redis版本号linux环境下查看redis的版本:查看redis的版本有两种方式:1.redis-server–version和redis-server-v 得到的结果是:Redisserverv=3.2.12sha=00000000:0malloc=jemalloc-3.6.0bits=641.redis-cli–version和redis-cli-…

    2022年10月19日
    0
  • 河北专接本计算机专业课平均分,2019年河北专接本招生数据及通过率分析[通俗易懂]

    河北专接本计算机专业课平均分,2019年河北专接本招生数据及通过率分析[通俗易懂]每天都会有很多的同学咨询小编河北专接本各个专业的通过率,其实对于单科的通过率来说并不能作为你专接本选专业的首要因素,因为专接本的分数充满的随机性,同学们往往会被某专业专业的高通过率所迷惑从而做出错误的选择。那么易学仕小编整理了一下河北专接本2019年的通过率,仅供大家参考!经管类是财经类和管理类,19年刚刚合并为经管类!这个大类一共招收2667人,参加考试达到100分以上的人数是8686人,整体通…

    2022年7月16日
    34
  • Pytest(18)pytest接口自动化完整框架思维导图[通俗易懂]

    Pytest(18)pytest接口自动化完整框架思维导图[通俗易懂]pytest接口自动化完整框架思维导图

    2022年7月30日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号