net stable funding ratio_ebtables

net stable funding ratio_ebtableseBPFInstructionSet—TheLinuxKerneldocumentationRegistersandcallingconventioneBPFhas10generalpurposeregistersandaread-onlyframepointerregister,allofwhichare64-bitswide.TheeBPFcallingconventionisdefinedas: R0:retu

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

eBPF Instruction Set — The Linux Kernel documentation

Registers and calling convention

eBPF has 10 general purpose registers and a read-only frame pointer register, all of which are 64-bits wide.

The eBPF calling convention is defined as:

  • R0: return value from function calls, and exit value for eBPF programs

  • R1 – R5: arguments for function calls

  • R6 – R9: callee saved registers that function calls will preserve

  • R10: read-only frame pointer to access stack

R0 – R5 are scratch registers and eBPF programs needs to spill/fill them if necessary across calls.

Instruction encoding

eBPF has two instruction encodings:

  • the basic instruction encoding, which uses 64 bits to encode an instruction

  • the wide instruction encoding, which appends a second 64-bit immediate value (imm64) after the basic instruction for a total of 128 bits.

The basic instruction encoding looks as follows:

32 bits (MSB)

16 bits

4 bits

4 bits

8 bits (LSB)

immediate

offset

source register

destination register

opcode

Note that most instructions do not use all of the fields. Unused fields shall be cleared to zero.

Instruction classes

The three LSB bits of the ‘opcode’ field store the instruction class:

class

value

description

BPF_LD

0x00

non-standard load operations

BPF_LDX

0x01

load into register operations

BPF_ST

0x02

store from immediate operations

BPF_STX

0x03

store from register operations

BPF_ALU

0x04

32-bit arithmetic operations

BPF_JMP

0x05

64-bit jump operations

BPF_JMP32

0x06

32-bit jump operations

BPF_ALU64

0x07

64-bit arithmetic operations

Arithmetic and jump instructions

For arithmetic and jump instructions (BPF_ALU, BPF_ALU64, BPF_JMP and BPF_JMP32), the 8-bit ‘opcode’ field is divided into three parts:

4 bits (MSB)

1 bit

3 bits (LSB)

operation code

source

instruction class

The 4th bit encodes the source operand:

source

value

description

BPF_K

0x00

use 32-bit immediate as source operand

BPF_X

0x08

use ‘src_reg’ register as source operand

The four MSB bits store the operation code.

Arithmetic instructions

BPF_ALU uses 32-bit wide operands while BPF_ALU64 uses 64-bit wide operands for otherwise identical operations. The code field encodes the operation as below:

code

value

description

BPF_ADD

0x00

dst += src

BPF_SUB

0x10

dst -= src

BPF_MUL

0x20

dst *= src

BPF_DIV

0x30

dst /= src

BPF_OR

0x40

dst |= src

BPF_AND

0x50

dst &= src

BPF_LSH

0x60

dst <<= src

BPF_RSH

0x70

dst >>= src

BPF_NEG

0x80

dst = ~src

BPF_MOD

0x90

dst %= src

BPF_XOR

0xa0

dst ^= src

BPF_MOV

0xb0

dst = src

BPF_ARSH

0xc0

sign extending shift right

BPF_END

0xd0

byte swap operations (see separate section below)

BPF_ADD | BPF_X | BPF_ALU means:

dst_reg = (u32) dst_reg + (u32) src_reg;

BPF_ADD | BPF_X | BPF_ALU64 means:

dst_reg = dst_reg + src_reg

BPF_XOR | BPF_K | BPF_ALU means:

src_reg = (u32) src_reg ^ (u32) imm32

BPF_XOR | BPF_K | BPF_ALU64 means:

src_reg = src_reg ^ imm32

Byte swap instructions

The byte swap instructions use an instruction class of BFP_ALU and a 4-bit code field of BPF_END.

The byte swap instructions instructions operate on the destination register only and do not use a separate source register or immediate value.

The 1-bit source operand field in the opcode is used to to select what byte order the operation convert from or to:

source

value

description

BPF_TO_LE

0x00

convert between host byte order and little endian

BPF_TO_BE

0x08

convert between host byte order and big endian

The imm field encodes the width of the swap operations. The following widths are supported: 16, 32 and 64.

Examples:

BPF_ALU | BPF_TO_LE | BPF_END with imm = 16 means:

dst_reg = htole16(dst_reg)

BPF_ALU | BPF_TO_BE | BPF_END with imm = 64 means:

dst_reg = htobe64(dst_reg)

BPF_FROM_LE and BPF_FROM_BE exist as aliases for BPF_TO_LE and BPF_TO_LE respetively.

Jump instructions

BPF_JMP32 uses 32-bit wide operands while BPF_JMP uses 64-bit wide operands for otherwise identical operations. The code field encodes the operation as below:

code

value

description

notes

BPF_JA

0x00

PC += off

BPF_JMP only

BPF_JEQ

0x10

PC += off if dst == src

BPF_JGT

0x20

PC += off if dst > src

unsigned

BPF_JGE

0x30

PC += off if dst >= src

unsigned

BPF_JSET

0x40

PC += off if dst & src

BPF_JNE

0x50

PC += off if dst != src

BPF_JSGT

0x60

PC += off if dst > src

signed

BPF_JSGE

0x70

PC += off if dst >= src

signed

BPF_CALL

0x80

function call

BPF_EXIT

0x90

function / program return

BPF_JMP only

BPF_JLT

0xa0

PC += off if dst < src

unsigned

BPF_JLE

0xb0

PC += off if dst <= src

unsigned

BPF_JSLT

0xc0

PC += off if dst < src

signed

BPF_JSLE

0xd0

PC += off if dst <= src

signed

The eBPF program needs to store the return value into register R0 before doing a BPF_EXIT.

Load and store instructions

For load and store instructions (BPF_LD, BPF_LDX, BPF_ST and BPF_STX), the 8-bit ‘opcode’ field is divided as:

3 bits (MSB)

2 bits

3 bits (LSB)

mode

size

instruction class

The size modifier is one of:

size modifier

value

description

BPF_W

0x00

word (4 bytes)

BPF_H

0x08

half word (2 bytes)

BPF_B

0x10

byte

BPF_DW

0x18

double word (8 bytes)

The mode modifier is one of:

mode modifier

value

description

BPF_IMM

0x00

64-bit immediate instructions

BPF_ABS

0x20

legacy BPF packet access (absolute)

BPF_IND

0x40

legacy BPF packet access (indirect)

BPF_MEM

0x60

regular load and store operations

BPF_ATOMIC

0xc0

atomic operations

Regular load and store operations

The BPF_MEM mode modifier is used to encode regular load and store instructions that transfer data between a register and memory.

BPF_MEM | <size> | BPF_STX means:

*(size *) (dst_reg + off) = src_reg

BPF_MEM | <size> | BPF_ST means:

*(size *) (dst_reg + off) = imm32

BPF_MEM | <size> | BPF_LDX means:

dst_reg = *(size *) (src_reg + off)

Where size is one of: BPF_BBPF_HBPF_W, or BPF_DW.

Atomic operations

Atomic operations are operations that operate on memory and can not be interrupted or corrupted by other access to the same memory region by other eBPF programs or means outside of this specification.

All atomic operations supported by eBPF are encoded as store operations that use the BPF_ATOMIC mode modifier as follows:

  • BPF_ATOMIC | BPF_W | BPF_STX for 32-bit operations

  • BPF_ATOMIC | BPF_DW | BPF_STX for 64-bit operations

  • 8-bit and 16-bit wide atomic operations are not supported.

The imm field is used to encode the actual atomic operation. Simple atomic operation use a subset of the values defined to encode arithmetic operations in the imm field to encode the atomic operation:

imm

value

description

BPF_ADD

0x00

atomic add

BPF_OR

0x40

atomic or

BPF_AND

0x50

atomic and

BPF_XOR

0xa0

atomic xor

BPF_ATOMIC | BPF_W  | BPF_STX with imm = BPF_ADD means:

*(u32 *)(dst_reg + off16) += src_reg

BPF_ATOMIC | BPF_DW | BPF_STX with imm = BPF ADD means:

*(u64 *)(dst_reg + off16) += src_reg

BPF_XADD is a deprecated name for BPF_ATOMIC | BPF_ADD.

In addition to the simple atomic operations, there also is a modifier and two complex atomic operations:

imm

value

description

BPF_FETCH

0x01

modifier: return old value

BPF_XCHG

0xe0 | BPF_FETCH

atomic exchange

BPF_CMPXCHG

0xf0 | BPF_FETCH

atomic compare and exchange

The BPF_FETCH modifier is optional for simple atomic operations, and always set for the complex atomic operations. If the BPF_FETCH flag is set, then the operation also overwrites src_reg with the value that was in memory before it was modified.

The BPF_XCHG operation atomically exchanges src_reg with the value addressed by dst_reg + off.

The BPF_CMPXCHG operation atomically compares the value addressed by dst_reg + off with R0. If they match, the value addressed by dst_reg + off is replaced with src_reg. In either case, the value that was at dst_reg + off before the operation is zero-extended and loaded back to R0.

Clang can generate atomic instructions by default when -mcpu=v3 is enabled. If a lower version for -mcpu is set, the only atomic instruction Clang can generate is BPF_ADD without BPF_FETCH. If you need to enable the atomics features, while keeping a lower -mcpu version, you can use -Xclang -target-feature -Xclang +alu32.

64-bit immediate instructions

Instructions with the BPF_IMM mode modifier use the wide instruction encoding for an extra imm64 value.

There is currently only one such instruction.

BPF_LD | BPF_DW | BPF_IMM means:

dst_reg = imm64

Legacy BPF Packet access instructions

eBPF has special instructions for access to packet data that have been carried over from classic BPF to retain the performance of legacy socket filters running in the eBPF interpreter.

The instructions come in two forms: BPF_ABS | <size> | BPF_LD and BPF_IND | <size> | BPF_LD.

These instructions are used to access packet data and can only be used when the program context is a pointer to networking packet. BPF_ABS accesses packet data at an absolute offset specified by the immediate data and BPF_IND access packet data at an offset that includes the value of a register in addition to the immediate data.

These instructions have seven implicit operands:

  • Register R6 is an implicit input that must contain pointer to a struct sk_buff.

  • Register R0 is an implicit output which contains the data fetched from the packet.

  • Registers R1-R5 are scratch registers that are clobbered after a call to BPF_ABS | BPF_LD or BPF_IND | BPF_LD instructions.

These instructions have an implicit program exit condition as well. When an eBPF program is trying to access the data beyond the packet boundary, the program execution will be aborted.

BPF_ABS | BPF_W | BPF_LD means:

R0 = ntohl(*(u32 *) (((struct sk_buff *) R6)->data + imm32))

BPF_IND | BPF_W | BPF_LD means:

R0 = ntohl(*(u32 *) (((struct sk_buff *) R6)->data + src_reg + imm32))

eBPF Instruction Set — The Linux Kernel documentationicon-default.png?t=M4ADhttps://www.kernel.org/doc/html/latest/bpf/instruction-set.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/191154.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Lambda架构简介

    Lambda架构简介参考文章:深入理解大数据架构之——Lambda架构传统系统的问题“我们正在从IT时代走向DT时代(数据时代)。IT和DT之间,不仅仅是技术的变革,更是思想意识的变革,IT主要是为自我服务,用来更好地自我控制和管理,DT则是激活生产力,让别人活得比你好”——阿里巴巴董事局主席马云。数据量从M的级别到G的级别到现在T的级、P的级别。数据量的变化数据管理系统(DBMS)和数仓系统(DW)也在悄然的变化着。传统应用的数据系统架构设计时,应用直接访问数据库系统。当用户访问量增加时,数据库无法支撑

    2022年6月25日
    33
  • 基于Gradle搭建Spring 5.3.13-release源码阅读环境

    基于Gradle搭建Spring 5.3.13-release源码阅读环境基于 Gradle 搭建 Spring5 3 13 release 源码阅读环境

    2025年5月31日
    2
  • 微服务架构的分布式事务解决方案「建议收藏」

    微服务架构的分布式事务解决方案

    2022年3月13日
    87
  • Git安装教程(详细教程)

    Git安装教程(详细教程)Git安装教程大家好,今天我们来学习一下怎么安装git这个软件,好好看,好好学,超详细的。第一步下载git(找到自己需要的版本)第二步下载完点击安装包进入使用许可声明界面第三步点击Next进入选择安装路径界面这里我是选择装在D盘,大家如果嫌麻烦就默认安装在C盘第四步点击Next进入选择安装组件界面上图红框内的选项是默认勾选的,建议不要动。绿色框1是决定是否在桌面创建快捷方式的。绿色框2是决定在所有控制台窗口中使用TrueType字体和是否每天检查Git

    2022年5月1日
    47
  • 【池化选择】全局最大池化和全局平均池化的实验分析

    根据MIT的LearningDeepFeaturesforDiscriminativeLocalization论文中的描述,在使用类响应图classactivationmapping(CAM)对比全局平均池化Globalaveragepooling(GAP)vs全局最大池化globalmaxpooling(GMP):类响应图示例:…

    2022年4月9日
    346
  • linux 查看java的pid,linux 查看java进程pid「建议收藏」

    linux 查看java的pid,linux 查看java进程pid「建议收藏」linux查看java进程pid[2021-01-3021:05:24]简介:建站服务器这篇文章主要介绍了linux中如何查看系统进程,具有一定借鉴价值,需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获。下linux查看端口被哪个进程占用的方法:1、使用“lsof-i:端口号”来查看;2、使用“netstat-tunlp|grep端口号”来查看。linux查看端口被哪个进程占…

    2022年8月24日
    9

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号