python计算双色球数字概率_python绘制双色球走势图

python计算双色球数字概率_python绘制双色球走势图本次将进行下期双色球号码的预测,想想有些小激动啊。代码中使用了线性回归算法,这个场景使用这个算法,预测效果一般,各位可以考虑使用其他算法尝试结果。#!/usr/bin/python#-*-coding:UTF-8-*-#导入需要的包importpandasaspdimportnumpyasnpimportmatplotlib.pyplotasplt

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

友情提示:双色球预测分析只为练习技术,不要抱着预测中大奖的心态,不可能预测准确。
python数据分析1:获取双色球历史信息
python数据分析2:双色球 蓝红球分析统计
python数据分析3:双色球 单个红和蓝球哪个比例高
python数据分析4:双色球 两个红和蓝球哪组合比例高
python数据分析5:双色球 两个红球哪组合比例高
python数据分析6:双色球 使用线性回归算法预测下期中奖结果
 

本次将进行下期双色球号码的预测,想想有些小激动啊。

代码中使用了线性回归算法,这个场景使用这个算法,预测效果一般,各位可以考虑使用其他算法尝试结果。

发现之前有很多代码都是重复的工作,为了让代码看的更优雅,定义了函数,去调用,顿时高大上了

#!/usr/bin/python
# -*- coding:UTF-8 -*-

#导入需要的包
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import operator
from sklearn import datasets,linear_model
from sklearn.linear_model import LogisticRegression

#读取文件
df = pd.read_table('newdata.txt',header=None,sep=',')

#读取日期
tdate = sorted(df.loc[:,0])

#将以列项为数据,将球号码取出,写入到csv文件中,并取50行数据
# Function to red number to csv file
def RedToCsv(h_num,num,csv_name):
    h_num = df.loc[:,num:num].values
    h_num = h_num[50::-1]
    renum2 = pd.DataFrame(h_num)
    renum2.to_csv(csv_name,header=None)
    fp = file(csv_name)
    s = fp.read()
    fp.close()
    a = s.split('\n')
    a.insert(0, 'numid,number')
    s = '\n'.join(a)
    fp = file(csv_name, 'w')
    fp.write(s)
    fp.close()

#调用取号码函数
# create file
RedToCsv('red1',1,'rednum1data.csv')
RedToCsv('red2',2,'rednum2data.csv')
RedToCsv('red3',3,'rednum3data.csv')
RedToCsv('red4',4,'rednum4data.csv')
RedToCsv('red5',5,'rednum5data.csv')
RedToCsv('red6',6,'rednum6data.csv')
RedToCsv('blue1',7,'bluenumdata.csv')


#获取数据,X_parameter为numid数据,Y_parameter为number数据
# Function to get data
def get_data(file_name):
    data = pd.read_csv(file_name)
    X_parameter = []
    Y_parameter = []
    for single_square_feet ,single_price_value in zip(data['numid'],data['number']):
        X_parameter.append([float(single_square_feet)])
        Y_parameter.append(float(single_price_value))
    return X_parameter,Y_parameter


#训练线性模型
# Function for Fitting our data to Linear model
def linear_model_main(X_parameters,Y_parameters,predict_value):
    # Create linear regression object
    regr = linear_model.LinearRegression()
    #regr = LogisticRegression()
    regr.fit(X_parameters, Y_parameters)
    predict_outcome = regr.predict(predict_value)
    predictions = {}
    predictions['intercept'] = regr.intercept_
    predictions['coefficient'] = regr.coef_
    predictions['predicted_value'] = predict_outcome
    return predictions


#获取预测结果函数
def get_predicted_num(inputfile,num):
    X,Y = get_data(inputfile)
    predictvalue = 51
    result = linear_model_main(X,Y,predictvalue)
    print "num "+ str(num) +" Intercept value " , result['intercept']
    print "num "+ str(num) +" coefficient" , result['coefficient']
    print "num "+ str(num) +" Predicted value: ",result['predicted_value']


#调用函数分别预测红球、蓝球
get_predicted_num('rednum1data.csv',1)
get_predicted_num('rednum2data.csv',2)
get_predicted_num('rednum3data.csv',3)
get_predicted_num('rednum4data.csv',4)
get_predicted_num('rednum5data.csv',5)
get_predicted_num('rednum6data.csv',6)

get_predicted_num('bluenumdata.csv',1)


# 获取X,Y数据预测结果
# X,Y = get_data('rednum1data.csv')
# predictvalue = 21
# result = linear_model_main(X,Y,predictvalue)
# print "red num 1 Intercept value " , result['intercept']
# print "red num 1 coefficient" , result['coefficient']
# print "red num 1 Predicted value: ",result['predicted_value']


# Function to show the resutls of linear fit model
def show_linear_line(X_parameters,Y_parameters):
    # Create linear regression object
    regr = linear_model.LinearRegression()
    #regr = LogisticRegression()
    regr.fit(X_parameters, Y_parameters)
    plt.figure(figsize=(12,6),dpi=80)
    plt.legend(loc='best')
    plt.scatter(X_parameters,Y_parameters,color='blue')
    plt.plot(X_parameters,regr.predict(X_parameters),color='red',linewidth=4)
    plt.xticks(())
    plt.yticks(())
    plt.show()

#显示模型图像,如果需要画图,将“获取X,Y数据预测结果”这块注释去掉,“调用函数分别预测红球、蓝球”这块代码注释下
# show_linear_line(X,Y)

画图结果:

python计算双色球数字概率_python绘制双色球走势图

预测2016-05-15开奖结果:

实际开奖结果:05 06 10 16 22 26  11

以下为预测值:

#取5个数,计算的结果
num 1 Intercept value  5.66666666667
num 1 coefficient [-0.6]
num 1 Predicted value:  [ 2.06666667]
num 2 Intercept value  7.33333333333
num 2 coefficient [ 0.2]
num 2 Predicted value:  [ 8.53333333]
num 3 Intercept value  14.619047619
num 3 coefficient [-0.51428571]
num 3 Predicted value:  [ 11.53333333]
num 4 Intercept value  17.7619047619
num 4 coefficient [-0.37142857]
num 4 Predicted value:  [ 15.53333333]
num 5 Intercept value  21.7142857143
num 5 coefficient [ 1.11428571]
num 5 Predicted value:  [ 28.4]
num 6 Intercept value  28.5238095238
num 6 coefficient [ 0.65714286]
num 6 Predicted value:  [ 32.46666667]
num 1 Intercept value  9.57142857143
num 1 coefficient [-0.82857143]
num 1 Predicted value:  [ 4.6]

四舍五入结果:
2 9 12 16 28 33 5

#取12个数,计算的结果四舍五入:
3 7 12 15 24 30 7

#取15个数,计算的结果四舍五入:
4 7 13 15 25 31 7

#取18个数,计算的结果四舍五入:
4 8 13 16 23 31 8

#取20个数,计算的结果四舍五入:
4 7 12 22 24 27 10

#取25个数,计算的结果四舍五入:
7 8 13 17 24 30 6

#取50个数,计算的结果四舍五入:
4 10 14 18 23 29 8

#取100个数,计算的结果四舍五入:
5 11 15 19 24 29 8

#取500个数,计算的结果四舍五入:
5 10 15 20 24 29 9

#取1000个数,计算的结果四舍五入:
5 10 14 19 24 29 9

#取1939个数,计算的结果四舍五入:
5 10 14 19 24 29 9

看来预测中奖真是有些难度,随机性太高,双色球预测案例,只是为了让入门数据分析的朋友有些思路,要想中大奖还是有难度的,多做好事善事多积德行善吧。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/171743.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • wd移动硬盘不能识别_西数移动硬盘电脑提示无法识别USB设备怎么办「建议收藏」

    展开全部1.造成USB设备无法识别的故障是由于很多原因引起的,包括软、硬件,解决方法32313133353236313431303231363533e58685e5aeb931333337623431如下:首先将usb设备插入计算机接口,然后在桌面左下角单击“开始”菜单,单击“运行”命令,打开框中键入“cmd”命令,单击“确定”按钮。2.启动命令提示符窗口,分别执行以下两条命令regadd”H…

    2022年4月11日
    68
  • 艺术概论[通俗易懂]

    目录一.艺术的本质与特征艺术本质1.客观精神说2.主观精神说3.模仿说/再现说艺术的特征二.艺术的起源中外艺术史上关于艺术起源的五种观点艺术起源的第六种看法:多元决定论三.艺术的功能与艺术教育艺术的社会功能艺术教育四.文化系统中的艺术作为文化现象的艺术艺术与哲学艺术与宗教艺术与道德艺术与科学五.实用艺术实用艺术的主要种类实用艺术的审美特征中外实用艺术精品赏析六.造型艺术造型艺术的主要种类造型艺术的审美特征中外造型艺术精品赏析七.表情艺术表情艺术的主要种类表情艺术的审美特征中外表情艺术的精品赏析八.综合

    2022年4月17日
    49
  • bs架构与cs架构举例_cs架构嵌入BS

    bs架构与cs架构举例_cs架构嵌入BSBS架构简介指一种软件的开发模式,服务器/浏览器结构,即Browser/Server,最大的特点是不需要安装在手机或者电脑上面,有浏览器就可以使用.例如现在越来越多的软件都是基于BS架构(微信小程序,在线办公软件).拓展B/S架构是对C/S架构的一种变化或者改进的架构.在这种架构下,用户工作页面是通过WWW浏览器实现,极少部分事务逻辑在前端实现,但是主要事务逻辑在服务端实现,形成所谓三层3-tier结构——在下方超链接可了解三层架构3-tier-其实也就和SpringMVC框架层级代码结

    2022年9月10日
    2
  • linux时间戳转换成时间指令_shell脚本获取时间戳

    linux时间戳转换成时间指令_shell脚本获取时间戳1、时间戳转换为正常显示的时间格式

    2022年10月2日
    2
  • clion永久激活(注册激活)

    (clion永久激活)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~2JTX0APX6F-eyJsaWNlbnNlSWQiOi…

    2022年3月29日
    526
  • kali Linux开启ssh服务

    kali Linux开启ssh服务目的 本地 xshell 连接 KaliLinux 步骤 1 修改 kaliLinux 的配置文件 vim etc ssh sshd config 进入配置文件去掉 PasswordAuth 前的 号 且后面跟 yes 去掉 PermitRootLo 前的 号 且后面跟 yes 2 开启 ssh 服务 servicesshst 关闭服务查看状态 servicesshst xshel

    2025年9月5日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号