情感的强度分类_情感量表

情感的强度分类_情感量表一、SO-HowNet   情感倾向强度值计算公式为:其中,Pwords代表正面情感种子词语集合,Nwords代表负面种子词语集合。word1和word2相似度就是各概念之间相似度的最大值。计算两个义原相似度公式如下:其中,p1,p2为两个需要计算比较的义原,Depth(p)是义原层次体系中的深度,Spd

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
一、SO-HowNet

    

情感倾向强度值计算公式为:

情感的强度分类_情感量表

其中,Pwords代表正面情感种子词语集合,Nwords代表负面种子词语集合。

情感的强度分类_情感量表

word1word2相似度就是各概念之间相似度的最大值。

计算两个义原相似度公式如下:

情感的强度分类_情感量表

其中,p1,p2为两个需要计算比较的义原,Depth(p)是义原层次体系中的深度,Spd(p1,p2)表示p1p2两者在层次体系的重合度。

 

以上计算方式可以在github下载到源代码,直接调用该函数就可以计算两个单词的相似度,但是计算结果返回的值为0,即无法计算这两个词的相似度,个人理解是返回0,应该是其语义库中无法查询到该词(下载的情感词典中存在类似短语的词,或者成语,可能导致无法识别)


二、SO-PMI
        
在文献:

情感的强度分类_情感量表

Turney使用PMI(点态互信息量)来计算两个词的相关强度

情感的强度分类_情感量表

该值越大表示两个词语的相关程度就越强。

可以通过搜索引擎来计算PMI的值。一个词word的概率为搜索引擎返回hit值与总的搜索引擎返回的索引页面数比值。Word1word2共同出现的概率同样如此计算。

因此,word1word2PMI值计算为:
情感的强度分类_情感量表

在实际应用中,也经常使用语料库来统计词语出现的概率。计算公式如下:

情感的强度分类_情感量表

其中,df(word)表示在语料中含有词语word的文档数目,N代表为语料数据集中文档总的数目。

 

所以,一个为知情感倾向词语word的情感倾向强度值计算为:

情感的强度分类_情感量表

Pwords是褒义情感种子词语的集合,Nwords是贬义情感种子的词语集合。(PwordsNwords可以取为语料数据集中hits最高的前100个词)

 

但是,在语料库中,如果一个词语出现概率较小时,可能得不到该词语的正确情感倾向。



三、情感词典分析流程
情感的强度分类_情感量表

四、SO-PMI和SO-HowNet对比分析
        关于SO-HowNet: 最近想通过HowNet来计算词语情感倾向强度值,但是经过不懈努力,发现词库中很多词无法计算情感倾向强度值,原因是:HowNet是董振东先生定义的一套词语知识库,里面根据语义表示了词与词的关系等信息,但是该词库是人工定义的有些词没有加入到知识库中,如“给力”,“正能量”,“坑爹”等词找不到义原。所以,如果确实要使用HowNet必须根据自己的实际工作构造自己的词语知识库,不过这个工作量相对较大,可行性不高。

        关于SO-PMI:由于SO-HowNet存在以上缺点,基于统计的SO-PMI计算两个词的互信息,即计算词语在语料中出现的概率以及词语与词语在句子中同时出现的概率可用于提供计算词语倾向性的一种方法。该方法减少了人工编辑知识库的成本,完全依赖语料来决定词语的倾向性,比较有实际意义。但是该方法存在一个问题是,如果一个词出现概率比较小,可能得不到该词语的正确情感倾向。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/172439.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Qt学习—qt编写定时关机程序

    Qt学习—qt编写定时关机程序编写了一个简单的定时关机程序,软件界面如下。顺便记录一下所用的控件的一些简单的使用方法。程序中用到的控件主要是QLCDNumber(数码管控件)以及QSpinBox()(滚动框控件)。通过system()调用系统的关机命令。需要包含头文件stdlib.h。此外涉及到数码管以及滚动框显示数字时,前缀“0”的显示和消隐的问题。以下是代码。首先是main.cpp#include

    2022年7月22日
    28
  • 论文投稿系列之Cover Letter写法(一)[通俗易懂]

    论文投稿系列之Cover Letter写法(一)[通俗易懂]论文投稿系列之CoverLetter写法(一)研之成理微信公众号:研之成理(ID:rationalscience)取消关注PytLab酱等87人赞同了该文章作者:ZSH1.什么是Coverletter?CoverLetter,即投稿信,是论文投递时与论文一起发送给编辑的信件,其目的是让编辑在阅读你的论文之前,简单了解你文章的基本情况。Cove…

    2022年4月29日
    178
  • c语言opencv读取图像_matlab读取一幅图像并显示

    c语言opencv读取图像_matlab读取一幅图像并显示函数cv2.imread()用于从指定的文件读取图像OpenCV完整例程200篇01.图像的读取(cv2.imread)02.图像的保存(cv2.imwrite)03.图像的显示(cv2.imshow)07.图像的创建(np.zeros)08.图像的复制(np.copy)09.图像的裁剪(cv2.selectROI)10.图像的拼接(np.hstack)……………

    2022年8月31日
    2
  • 分布式系统设计权衡之CAP(一致性,可用性,分区容错性)[通俗易懂]

    分布式系统设计权衡之CAP(一致性,可用性,分区容错性)[通俗易懂]https://blog.csdn.net/Sun_P0/article/details/50221787写在最前:1.为什么学习并记录分布式设计理念一系列相关的东西在日常工作中系统设计评审的时候,经常会有一些同事抛出一些概念,高可用性,一致性等等字眼,他们用这些最基本的概念去反驳系统最初的设计,但是很多人理解的可用性,一致性等等问题,都是自己拍脑袋想的,或者根本和最原始表达的意思就不…

    2022年7月25日
    12
  • 全国城市拼音对照表[通俗易懂]

    全国城市拼音对照表[通俗易懂]全国城市拼音对照表

    2022年8月4日
    7
  • Web Service学习笔记

    Web Service学习笔记

    2021年12月8日
    42

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号