回声状态网络基础知识_肝血管瘤内回声成网络样

回声状态网络基础知识_肝血管瘤内回声成网络样http://jlearning.cn/2017/05/29/ESN-basic-tutorial/最近在看回声状态网络(EchoStateNetwork)的内容,注意到中文搜索引擎搜不到关于有关EchoStateNetwork通俗的讲解,打算写一下关于ESN的一个基本教程。本文先用一小段简单介绍ESN是什么,然后用公式来表示这种网络,并说明他的优缺点,最后用一个可执行的简单例子来演示…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

http://jlearning.cn/2017/05/29/ESN-basic-tutorial/

最近在看回声状态网络(Echo State Network)的内容,注意到中文搜索引擎搜不到关于有关Echo State Network通俗的讲解,打算写一下关于ESN的一个基本教程。本文先用一小段简单介绍ESN是什么,然后用公式来表示这种网络,并说明他的优缺点,最后用一个可执行的简单例子来演示一下ESN的效果。

由于本人能力有限,如在阅读过程中有任何疑问或者发现错误请在评论中指出。

ESN是RNN的一种,也是由输入层,隐藏层,输出层组成,并且在隐藏层到隐藏层之间有一个连接,用来保留前面时刻留下的信息。不同于RNN,ESN的输入层到隐藏层、隐藏层到隐藏层的连接权值是随机初始化,并且固定不变。在训练的过程中,我们只需要去训练隐藏层到输出层的连接权值。这就变成了一个线性回归问题,所以ESN训练起来非常快。

微信截图_20170529161715

ESN的神经网络如图所示,储备池就是常规神经网络中的隐藏层。输入层到储备池的连接为Win,储备池到下一个时刻储备池状态的连接为W,储备池到输出层的连接为Wout。另外还有一个前一时刻的输出层到下一个时刻的储备池的连接Wback,这个连接不是必须的(图中用虚线表示),由于这是一个入门级的基础教程,所以在后面的公式和例子代码中都不会涉及这一个连接。

图中所示,tt时刻的输入为u(t)u(t),一共K个节点,储备池状态为x(t)x(t),N个节点,输出为y(t)y(t),L个节点。

每一个时刻输入u(t)u(t),储备池都会更新状态,储备池的状态更新方式为:

 

x(t+1)=f(Winu(t+1)+Wx(t))x(t+1)=f(Winu(t+1)+Wx(t))

 

这个式子里,WinWin和WW都是在最初建立网络的时候随机初始化的,并且固定不变。u(t+1)u(t+1)是这个时刻的输入,x(t)x(t)是上一个时刻的储备池状态,在t=0时刻可以用0初始化。ff是一个激活函数,通常使用tanhtanh。

在建模的时候,和一般的神经网络一样,会在连接矩阵上加上一个偏置量,所以输入的uu是一个长度为1+K的向量,WinWin是一个[1+k,N]的矩阵,xx是一个长度为N的向量,WW是一个[N,N]的矩阵。

回声状态网络的输出方式为:

 

y(t)=Wout[1;u(t);x(t)]y(t)=Wout[1;u(t);x(t)]

 

有了储备池状态,再确定了ESN的输出方式之后,就可以根据目标输出ytargetytarget来确定WoutWout来让y(t)y(t)和ytarget(t)ytarget(t)的差距尽可能的小。这是一个简单的线性回归问题,计算的方法有很多种,不再赘述。

微信截图_20170529170125

到这里,我们就完成了ESN的训练工作。整个网络只需要训练WoutWout,所以它的训练过程非常快,这是ESN的优点之一。另外,对于一维时序数列的处理和预测,ESN有很好的优势。但对于高维的时序数列,比如说视频帧处理,ESN就不太能胜任了。

为了让这个网络能够正常的运转,还有一些地方是需要注意的:

  1. 之所以叫回声状态网络,是因为前面时刻输入的信息会通过WW回回荡在储备池中,就像回声一样。为了避免储备池状态爆炸,WW的特征值必须要小于等于1。这也就引入了ESN中谱半径的概念:WW的最大特征值。
  2. 由于网络中只有WoutWout是可变的,为了尽可能多的表示不同的数据规律,WW必须要设置的非常大,才能从中找出各种不同的特征进行输出。另一方面,WW的稀疏性也很重要,Hinton在多伦多大学的公开课里解释是:

建立一个松散的连接,这样某一信息可以在网络中的一小部分回荡,而不会迅速的传播到其他部分。

我不是特别的理解。希望有人解释一下。

最后引用一个例子来彻底理解最基本的ESN。

在页面中下载python源码和数据集,在python2.7环境中运行。

数据就是一维的,代码中每次输入长度为1,预测数据中后一位的值,当然长度也是1。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/179507.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • BindingNavigator操作DatagridView的数据[通俗易懂]

    BindingNavigator操作DatagridView的数据[通俗易懂]参考http://wenku.baidu.com/link?url=NWfEfArPZvDO_aI-xEKBHVGoZY9wQO_Oty_GCsGLiPspheCzFYLf_dytuWAqN2_0AvLpK-iAun55qe7HPKjfRJ1vI8N4EHADeyQ1hNnQrdW 1、往窗体拉一个BindingNavigator:如图绿色框,就是一个数据导航栏  再拉一个DataGrid…

    2022年7月12日
    14
  • 探索Java的日志世界

    探索Java的日志世界本文的思维导图一、主题打开日志的大门,探索的Java日志世界二、目标了解常用的日志框架掌握日志框架的选择和使用以及开发规范了解日志框架中的一些设计思想三、内容1、日志及日志框架简介1.1 、日志简介1.1.1 、 什么是日志?1)基本字义是指工作日志 ,详细介绍一个过程和经历的记录。 日志(汉语词汇)…

    2022年2月27日
    33
  • 模糊隶属函数确定例题_高斯隶属度函数

    模糊隶属函数确定例题_高斯隶属度函数1、模糊隶属度函数的确定方法直觉法:人们用自己对模糊概念的认识和理解,或者人们对模糊概念的普遍认同来建立隶属函数。这种方法通常用于描述人们熟知、有共识的客观模糊现象,或者用于难于采集数据的情形。二元对比排序法:二元对比排序方法就是通过对多个对象进行两两对比来确定某种特征下的顺序,由此来决定这些对象对该特征的隶属程度。这种方法更适用于根据事物的抽象性质由专家来确定隶属函数的情形,可以通过多名专家或者一个委员会,甚至–次民意测验来实施。模糊统计实验法:类似于统计学中的大样本实验法,根据概

    2025年6月30日
    0
  • Pygame安装的详细说明

    Pygame安装的详细说明Pygame的安装在未安装好pygame模块时,我们在使用pygame开发游戏就回发生Error:ModuleNotFoundError:Nomodulenamed‘pygame’此时则要安装好pygame模块才可以正常使用pygame模块进行游戏开发。下面详细讲述pygame模块的安装:1.先检查自己的python版本,我们现在用的一般是最新版,例如我下载的是python3….

    2022年5月23日
    68
  • 四阶龙格库塔法的基本原理_隐式龙格库塔法

    四阶龙格库塔法的基本原理_隐式龙格库塔法龙格库塔法的基本原理该算法是构建在数学支持的基础之上的。对于一阶精度的拉格朗日中值定理有:对于微分方程:y’=f(x,y)y(i+1)=y(i)+h*K1K1=f(xi,yi)当用点xi处的斜率近似值K1与右端点xi+1处的斜率K2的算术平均值作为平均斜率K*的近似值,那么就会得到二阶精度的改进拉格朗日中值定理:y(i+1)=y(i)+[h*(K1+K2)/2]K1=f(xi,yi)K2=f(…

    2022年10月22日
    0
  • 无刷电机的驱动

    无刷电机的驱动原文地址:http://www.dzkf.cn/html/zonghejishu/2009/0319/3706.html前言:   有关本文所谈论的无刷电机内容,只涉及低速飞行类航模电调的小功率无传感器应用,讲解的理论比较浅显易懂,旨在让初学者(象笔者本人)能够对无刷电机有一个比较快的认识,掌握基本原理和控制方法,可以在短时间内达到应用目的。理论性的内容涉及模拟电路知识、基础电子线路

    2022年8月30日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号