pr曲线 roc曲线_roc曲线与auc的含义

pr曲线 roc曲线_roc曲线与auc的含义评价指标系列PR曲线查准率和查全率PR曲线绘制ROC曲线TPR,FPR插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导出与导入导出导入PR曲线AUC就是衡量学习器优劣的一种性能指标。从定义可知,AUC可通过对ROC曲线下各部分的面积求和而得。查准率和查全率查准率,表示所有被预测为正类的样本(TP+F

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

PR曲线

混淆矩阵

预测 \真实 P N
P TP FP
N FN TN

查准率和查全率

查准率,表示所有被预测为正类的样本(TP+FP)是真正类(TP)的比例:
P = T P T P + F P P= \frac{TP}{TP+FP} P=TP+FPTP
查全率,表示所有真正类的样本(TP+FN)中被预测为真正类(TP)的比例:
R = T P T P + F N R= \frac{TP}{TP+FN} R=TP+FNTP

PR曲线绘制

PR曲线的横坐标为召回率R,纵坐标为查准率P

  1. 将预测结果按照预测为正类概率值排序
  2. 将阈值由1开始逐渐降低,按此顺序逐个把样本作为正例进行预测,每次可以计算出当前的P,R值
  3. 以P为纵坐标,R为横坐标绘制图像

图片名称

如何利用PR曲线对比性能:

  1. 如果一条曲线完全“包住”另一条曲线,则前者性能优于另一条曲线。
  2. PR曲线发生了交叉时:以PR曲线下的面积作为衡量指标,但这个指标通常难以计算
  3. 使用 “平衡点”(Break-Even Point),他是查准率=查全率时的取值,值越大代表效果越优
  4. BEP过于简化,更常用的是F1度量:
    F 1 = 2 ∗ P ∗ R P + R = 2 ∗ T P 样 本 总 数 + T P − T N F1= \frac{2*P*R}{P+R}=\frac{2*TP}{样本总数+TP-TN} F1=P+R2PR=+TPTN2TP

ROC曲线

AUC就是衡量学习器优劣的一种性能指标。从定义可知,AUC可通过对ROC曲线下各部分的面积求和而得。

TPR和FPR

真阳性率: T P R = T P T P + F N TPR= \frac{TP}{TP+FN} TPR=TP+FNTP
假阳性率: F P R = F P F P + T N FPR= \frac{FP}{FP+TN} FPR=FP+TNFP

ROC曲线绘制

ROC曲线的横坐标为FPR,纵坐标为TPR

  1. 将预测结果按照预测为正类概率值排序
  2. 将阈值由1开始逐渐降低,按此顺序逐个把样本作为正例进行预测,每次可以计算出当前的FPR,TPR值
  3. 以TPR为纵坐标,FPR为横坐标绘制图像

图片名称

如何利用ROC曲线对比性能:
ROC曲线下的面积(AUC)作为衡量指标,面积越大,性能越好

AUC的计算

AUC就是衡量学习器优劣的一种性能指标。从定义可知,AUC可通过对ROC曲线下各部分的面积求和而得。 AUC的统计意义是从所有正样本随机抽取一个正样本,从所有负样本随机抽取一个负样本,对应的预测probability中该正样本排在负样本前面的概率。
计算原理:所有的样本对中被正确排序的样本对(正类排在负类前面)的比例。

  1. 设正样本M个,负样本N个,样本总量n。
  2. 计算预测结果中每个样本的rank值,及升序排列后的位置,probability最大的样本rank为n。
  3. 当一个正样本在正类预测结果的升序排列中排在第k位,则证明它与排在其后面的负样本构成了正确排序对,则所有正确排序的样本对的总和为:
    举个例子:
    例如 ( r a n k 0 − 1 ) (rank_0-1) (rank01)表示rank最小的正例可以和 r a n k 0 − 1 rank_0-1 rank01个负样本构成正确样本对。
    C o r r e c t P a i r = ( r a n k 0 − 1 ) + ( r a n k 1 − 2 ) + . . . + ( r a n k i − ( i + 1 ) ) + . . + ( r a n k M − 1 − M ) = ∑ i ∈ 正 样 本 集 合 r a n k i − ∑ ( M + ( M − 1 ) + . . . + 1 ) = ∑ i ∈ 正 样 本 集 合 r a n k i − M ∗ ( M + 1 ) 2 CorrectPair = (rank_0-1) + (rank_1-2)+…\\ +(rank_i-(i+1))+..+(rank_{M-1}-M)\\ = \sum_{i\in 正样本集合}{rank_i}-\sum(M+(M-1)+…+1)\\ =\sum_{i\in 正样本集合}{rank_i}-\frac{M*(M+1)}{2} CorrectPair=(rank01)+(rank12)+...+(ranki(i+1))+..+(rankM1M)=iranki(M+(M1)+...+1)=iranki2M(M+1)

则AUC计算公式为:
A U C = C o r r e c t P a i r M ∗ N AUC=\frac{CorrectPair}{M*N} AUC=MNCorrectPair

python 代码实现及注解

def cacu_auc(label, prob):
    ''' :param label: 样本的真实标签 :param prob: 分类模型的预测概率值,表示该样本为正类的概率 :return: 分类结果的AUC '''
    # 将label 和 prob组合,这样使用一个key排序时另一个也会跟着移动
    temp = list(zip(label, prob))
    # 将temp根据prob的概率大小进行升序排序
    rank = [val1 for val1, val2 in sorted(temp, key=lambda x: x[1])]
    # 将排序后的正样本的rank值记录下来
    rank_list = [i+1 for i in range(len(rank)) if rank[i]==1]
    # 计算正样本个数m
    M = sum(label)
    # 计算负样本个数N
    N=len(label)-M
    return (sum(rank_list)-M*(M+1)/2)/(M*N)

类别不平衡问题

这里特指负样本数量远大于正样本时,在这类问题中,我们往往更关注正样本是否被正确分类,即TP的值。PR曲线更适合度量类别不平衡问题中:

  1. 因为在PR曲线中TPR和FPR的计算都会关注TP,PR曲线对正样本更敏感。
  2. 而ROC曲线正样本和负样本一视同仁,在类别不平衡时ROC曲线往往会给出一个乐观的结果。

参考
[1]: https://blog.csdn.net/ft_sunshine/article/details/108833761
[2]: 《机器学习》周志华

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/179653.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • pycharm配置Git和Github[通俗易懂]

    pycharm配置Git和Github[通俗易懂](Windows)pycharm配置Git和Github,协同开发1、安装Git1.1、验证是否安装git#cmd命令git–version#显示git版本则证明安装成功1.2、下载gitwindow下载链接安装好git之后,配置环境变量,验证git是否安装成功。1.3、配置git用户名和邮箱gitconfig–globaluser.name用户名gitconfig–globaluser.email邮箱1.4、在pycharm中配置git点击Fil

    2022年8月26日
    10
  • docker 搭建drone + gitee 的CI/CD

    docker 搭建drone + gitee 的CI/CD准备创建OAuth应用程序创建一个GiteeOAuth应用程序。ConsumerKey和ConsumerSecret用于授权访问Gitee资源。授权回调URL必须与以下格式和路径匹配,并且必须使用您的确切服务器方案和主机。创建共享密钥创建一个共享密钥来验证跑步者和您的中央无人机服务器之间的通信。您可以使用openssl生成共享密钥:$opensslrand-hex16bea26a2221fd8090ea38720fc445ec.

    2022年8月15日
    17
  • linux 下redis启动命令

    linux 下redis启动命令linux下redis启动命令/usr/local/bin/redis-server/home/data/redis-3.2.1/redis.conf如果不知道redis-server文件位置输入如下命令查询位置find/-nameredis-server查看是否启动成功:netstat-nplt…

    2022年6月26日
    59
  • C#并行计算 Parallel.ForEach[通俗易懂]

    C#并行计算 Parallel.ForEach[通俗易懂]C#并行计算Parallel.ForEach///<summary>///获取订单链接///</summary>publicvoidGetOrders(){GetToken();HttpHelperhttp=newHttpHelper();HttpItemitem=newHttpIte…

    2022年7月19日
    23
  • oracle amm和asmm,AMM和ASMM理解 | 学步园

    oracle amm和asmm,AMM和ASMM理解 | 学步园oracle11g新出参数MEMORY_MAX_TARGET和MEMORY_TARGET进行自动管理PGA和SGA称之为自动化内存管理(AutomaticMemoryManagement,AMM)MEMORY_MAX_TARGET:MEMORY_TARGET所能设定的最大值。非动态可调MEMORY_TARGET:操作系统上Oracle所能使用的最大内存值。动态参数,M…

    2022年6月1日
    61
  • 三极管驱动继电器电路

    三极管驱动继电器电路    继电器线圈需要流过较大的电流(约50mA)才能使继电器吸合,一般的集成电路不能提供这样大的电流,因此必须进行扩流,即驱动。图1所示为用NPN型三极管驱动继电器的电路图,图中阴影部分为继电器电路,继电器线圈作为集电极负载而接到集电极和正电源之间。当输入为0V时,三极管截止,继电器线圈无电流流过,则继电器释放(OFF);相反,当输入为+VCC时,三极管饱和,继电器线圈有相当的电流流过,…

    2022年6月24日
    26

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号