SPSS聚类分析——一个案例演示聚类分…「建议收藏」

SPSS聚类分析——一个案例演示聚类分…「建议收藏」本文实际为2010年5月8日完成并发布的,浏览量:7199,评论数:5。http://hi.baidu.com/datasoldier/item/37abae32474bf7f1a884289f在百度新版空间升级过程中,该篇文章丢失,今天,重新更新并发布,作为SPSS案例分析系列的第17篇文章。同时希望百度新版空间能不断完善,在升级过程中尽量避免出现文章丢失的现象。案例数据源:有20种

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

本文实际为2010年5月8日完成并发布的,浏览量:7199,评论数:5。

http://hi.baidu.com/datasoldier/item/37abae32474bf7f1a884289f
在百度新版空间升级过程中,该篇文章丢失,今天,重新更新并发布,作为 SPSS案例分析系列的第17篇文章。同时希望百度新版空间能不断完善,在升级过程中尽量避免出现文章丢失的现象。

案例数据源:
有20种12盎司啤酒成分和价格的数据,变量包括啤酒名称、热量、钠含量、酒精含量、价格。数据来自《SPSS for Windows 统计分析》data11-03。点击下载

【一】问题一:选择那些变量进行聚类?——采用“R型聚类”
1、现在我们有4个变量用来对啤酒分类,是否有必要将4个变量都纳入作为分类变量呢?热量、钠含量、酒精含量这3个指标是要通过化验员的辛苦努力来测定,而且还有花费不少成本,如果都纳入分析的话,岂不太麻烦太浪费?所以,有必要对4个变量进行降维处理,这里采用spss R型聚类(变量聚类),对4个变量进行降维处理。输出“相似性矩阵”有助于我们理解降维的过程。

2、4个分类变量量纲各自不同,这一次我们先确定用相似性来测度,度量标准选用pearson系数,聚类方法选最远元素,此时,涉及到相关,4个变量可不用标准化处理,将来的相似性矩阵里的数字为相关系数。若果有某两个变量的相关系数接近1或-1,说明两个变量可互相替代。

3、只输出“树状图”就可以了,个人觉得冰柱图很复杂,看起来没有树状图清晰明了。从proximity matrix表中可以看出热量和酒精含量两个变量相关系数0.903,最大,二者选其一即可,没有必要都作为聚类变量,导致成本增加。至于热量和酒精含量选择哪一个作为典型指标来代替原来的两个变量,可以根据专业知识或测定的难易程度决定。(与因子分析不同,是完全踢掉其中一个变量以达到降维的目的。)这里选用酒精含量,至此,确定出用于聚类的变量为:酒精含量,钠含量,价格。

【二】问题二:20中啤酒能分为几类?——采用“Q型聚类”
1、现在开始对20中啤酒进行聚类。开始不确定应该分为几类,暂时用一个3-5类范围来试探。Q型聚类要求量纲相同,所以我们需要对数据标准化,这一回用欧式距离平方进行测度。

2、主要通过树状图和冰柱图来理解类别。最终是分为4类还是3类,这是个复杂的过程,需要专业知识和最初的目的来识别。我这里试着确定分为4类。选择“保存”,则在数据区域内会自动生成聚类结果。

【三】问题三:用于聚类的变量对聚类过程、结果又贡献么,有用么?——采用“单因素方差分析”
1、聚类分析除了对类别的确定需讨论外,还有一个比较关键的问题就是分类变量到底对聚类有没有作用有没有贡献,如果有个别变量对分类没有作用的话,应该剔除。
2、这个过程一般用单因素方差分析来判断。注意此时,因子变量选择聚为4类的结果,而将三个聚类变量作为因变量处理。方差分析结果显示,三个聚类变量sig值均极显著,我们用于分类的3个变量对分类有作用,可以使用,作为聚类变量是比较合理的。

【四】问题四:聚类结果的解释?——采用”均值比较描述统计“
1、聚类分析最后一步,也是最为困难的就是对分出的各类进行定义解释,描述各类的特征,即各类别特征描述。这需要专业知识作为基础并结合分析目的才能得出。
2、我们可以采用spss的means均值比较过程,或者excel的透视表功能对各类的各个指标进行描述。其中,report报表用于描述聚类结果。对各类指标的比较来初步定义类别,主要根据专业知识来判定。这里到此为止。

以上过程涉及到spss层次聚类中的Q型聚类和R型聚类,单因素方差分析,means过程等,是一个很不错的多种分析方法联合使用的案例。数据源和部分介绍均摘自《SPSS for Windows 统计分析》书中。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/180703.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 数据结构 图的邻接矩阵

    数据结构 图的邻接矩阵图的邻接矩阵的存储方式是用两个数组来实现的,一个一维数组存储顶点信息,一个二维数组存储线(无向图)或弧(有向图)的信息。设图G有n个顶点,则邻接矩阵是一个n×n的方阵,定义为:无向图的邻接矩阵,两个顶点有边则为1,否则,为0;因为是无向图arc[i][j]=arc[j][i],所以矩阵为对称矩阵,对角线为自己到自己的边,邻接矩阵中,行之和或者列之和都为各顶点度的总数。设图G有是网图,有n个…

    2022年6月28日
    20
  • jvm调优常用工具

    jvm调优常用工具常用的JVM调优工具:Jconsole,jProfile,VisualVMJconsole:jdk自带,功能简单,但是可以在系统有一定负荷的情况下使用。对垃圾回收算法有很详细的跟踪。详细说明参考这里JProfiler:商业软件,需要付费。功能强大。详细说明参考这里VisualVM:JDK自带,功能强大,与JProfiler类似。推荐。调优的方法观察内存释放情况、集合类检查、对象树上…

    2022年5月8日
    80
  • IDEA(Jetbrains系列,pycharm,goland…)翻译插件推荐Translation 安装和使用以及快捷键绑定…

    IDEA(Jetbrains系列,pycharm,goland…)翻译插件推荐Translation 安装和使用以及快捷键绑定…首先第一步是安装该插件如图:File->setting–>plugins进入该页面,点击如图所示按钮.然后搜索Translation如图:我们需要的结果一般都不会排在前面,需要往下拉再找找,名字应当也是Translation,我这边已经安装了所以没有这个图标,找到Translation插件以后,就可以点击Install就可以…

    2022年8月28日
    3
  • 强化学习 模仿学习 于robot[通俗易懂]

    强化学习 模仿学习 于robot[通俗易懂]写在前面:分享知识是再好不过的事情。这篇文章主要是总结自己最近看的一些文章以及相关知识。自己在暑假实习的时候学习的就是在物理仿真平台上做robot的强化学习,未来读PhD的时候也被老师继续分配到了这个方向,哈哈。可能要一直从入门到入土了,趁着最近写researchproposal的时候,将最近的理解记录一下。鉴于笔者知识水平有限,若有不妥当之处,还请指出。摘要:robot强化学习模仿学…

    2022年9月19日
    0
  • 入门级都能看懂的softmax详解「建议收藏」

    入门级都能看懂的softmax详解「建议收藏」1.softmax初探在机器学习尤其是深度学习中,softmax是个非常常用而且比较重要的函数,尤其在多分类的场景中使用广泛。他把一些输入映射为0-1之间的实数,并且归一化保证和为1,因此多分类的概率之和也刚好为1。首先我们简单来看看softmax是什么意思。顾名思义,softmax由两个单词组成,其中一个是max。对于max我们都很熟悉,比如有两个变量a,b。如果a>b,则max为…

    2022年6月26日
    34
  • vue人脸识别_vue不是内部或外部命令

    vue人脸识别_vue不是内部或外部命令1.vue报错:无法将“vue”项识别为 cmdlet、函数、脚本文件或可运行程序的名称

    2022年8月18日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号