描述基于基尼系数法构建决策树的步骤_决策树 基尼系数

描述基于基尼系数法构建决策树的步骤_决策树 基尼系数决策树的基尼系数计算过程1、基尼指数的计算在介绍具体的计算之前,先从一个例子入手吧。先看看下面这个数据,我们需要通过前三列的特征来推断出最后一列是yes,no1、数据ChestPainGoodBloodCirculationBlockedArteriesHeartDiseaseNoNoNoNoYesYesYesYesYesYesNoNoYesNo???Yesetc…etc…etc…etc…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

决策树的基尼系数计算过程

1、基尼指数的计算

在介绍具体的计算之前,先从一个例子入手吧。

先看看下面这个数据,我们需要通过前三列的特征来推断出最后一列是yes,no

1、数据

Chest Pain

Good Blood Circulation

Blocked Arteries

Heart Disease

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Yes

No

???

Yes

etc…

etc…

etc…

etc…

2、统计

Chest Pain

true

Heart Disease

Yes:105

No:39

false

Heart Disease

Yes:34

No:125

Good Blood Circulation

true

Heart Disease

Yes:37

No:127

false

Heart Disease

Yes:100

No:33

Blocked Arteries

true

Heart Disease

Yes:92

No:31

false

Heart Disease

Yes:45

No:129

在统计数据的时候,若遇见缺失值,最简单的办法就是先跳过这个缺失值

从统计的数据可以看出,在某一特征的条件下,无论是true或者false都有患有Heart Disease的人,同时也都有健康的人。且这两个分布是不同,有的true中患有Heart Disease的多一些,有的false中患有Heart Disease的多一些,则就要引出另一个概念—纯度。刚刚将的那种情况其实就是不纯的,那么我们接下来的操作就是对其不断的提纯。

接下来引出基尼指数的概念:基尼指数遵循最小的准则,计算得到的基尼指数越小,则越纯。接下来则以该特征作为决策树的一个分支。但若当前节点的基尼指数小于待划分节点的基尼指数时,则不需要划分。

3、基尼指数的基本公式

Single_gini = 1 − ( a a + b ) 2 − ( b a + b ) 2 1-(\dfrac{a}{a+b})^2-(\dfrac{b}{a+b})^21−(a+ba​)2−(a+bb​)2

Gini_Index = Single_gini_true * a + b a + b + c + d \dfrac{a+b}{a+b+c+d}a+b+c+da+b​ + Single_gini_false * c + d a + b + c + d \dfrac{c+d}{a+b+c+d}a+b+c+dc+d​

4、上述例子的计算过程

第一次分支

Chest Pain

Gini_index = 0.364

Good Blood

Gini_indx = 0.360

Blocked Arteries

Gini_index = 0.381

有上面这些结果可知,我们第一次分叉应该选择Good Blood这个特征,因为前面我们提到,在同一情况下一个特征的基尼指数越小,其纯度也就越高,也就越具有代表性,分类的效果也就越好。上面三个例子相比较,我们应该选择Good Blood这个作为决策树的一个分支。

第二次分支

我们第一次是以Good Blood为分支的那么,假设选定该分支的true,那么其基尼指数,用上面的公式可以得到大概是0.35(false分支上的计算也是同理,这里我们只进行true分支上的基尼指数的计算)

进行分支后我们对剩余的两个特征的值进行统计

Chest Pain

true

Heart Disease

Yes:13

No:98

false

Heart Disease

Yes:24

No:29

Blocked Arteries

true

Heart Disease

Yes:24

No:25

false

Heart Disease

Yes:13

No:102

并在此基础上,我们进行第二次分支

接下来来计算Chest Pain和Blocked Arteries这两类特征在Good Blood这类特征的分支下的基尼指数

Chest Pain

Gini_index = 0.3

Blocked Arteries

Gini_index = 0.29

因为0.29<0.3<0.35,故我们选择Blocked Arteries作为 Good Blood的true分支下的一个分支节点

第三次分支

假设选定该分支的true,那么其基尼指数,用上面的公式可以得到大概是0.5

进行分支后我们对剩余的特征的值进行统计

Chest Pain

true

Heart Disease

Yes:17

No:3

false

Heart Disease

Yes:7

No:22

并在此基础上,我们进行第三次分支

接下来来计算Chest Pain这类特征在Blocked Arteries这类特征的分支下的基尼指数

Chest Pain

Gini_index = 0.33

因为0.33<0.5,故我们选择Chest Pain作为Blocked Arteries的true分支下的一个分支节点

但假如选定的分支是false,那么其基尼指数计算得到大概是0.2

Chest Pain

true

Heart Disease

Yes:7

No:26

false

Heart Disease

Yes:6

No:76

接下来来计算Chest Pain这类特征在Blocked Arteries这类特征的分支下的基尼指数

Chest Pain

Gini_index = 0.29

因为0.29>0.2故该节点不需要分支,因为分支的目的是提纯,而提纯,则是选择使基尼指数变小的那个特征,而0.29>0.2基尼系数上升,没有达到提纯的目的,故不需要分支。

学习视频:https://www.bilibili.com/video/BV17J411C7zZ?p=59

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/182506.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • pycharm 2021永久激活码破解方法

    pycharm 2021永久激活码破解方法,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月15日
    161
  • C语言之数组中你所不在意的重要知识

    C语言之数组中你所不在意的重要知识

    2021年11月15日
    46
  • 后端框架有哪些?8个流行的后端框架推荐

    后端框架有哪些?8个流行的后端框架推荐后端框架有哪些?8个流行的后端框架推荐后端框架在选择要使用的后端框架时,有许多选项可用。虽然每个后端框架都有自己的优点和缺点,但在做出最终决定之前,还有一些其他因素需要考虑。在本指南中,我们将仔细研究经过尝试的框架,以确定哪个是最适合您的后端框架。后端vs前端如果您是Web开发世界的新手,后端和前端开发之间的区别可能不那么明显,但是,了解两者之间的区别很重要。以下是前端开发人员与后端开发人员的一些区别。前端开发:前端开发人员在很大程度上负责用户所看到的内容(即网站页面),前端开发人员主要使用HTM

    2022年6月10日
    549
  • oracle锁表处理三步骤

    oracle锁表处理三步骤selectsession_idfromv$locked_object; –425SELECTsid,serial#,username,osuserFROMv$sessionwheresid=425;ALTERSYSTEMKILLSESSION’425,9613′;

    2022年6月16日
    34
  • HbuilderX打包app,Hbuilder怎么打包app,H5打包成app,H5怎么打包成app「建议收藏」

    1.下载HbuilderX之后新建项目2.在这里选则你需要新建的项目类型,本人打包的是h5app,选的5+app3.选择好项目本地存放的地址,编写项目名,之后点击创建4.打开刚刚创建的那个项目,点击打开manifest.json,就是下图这样子5.填写你的h5项目地址6.基本配置(看图),太简单太多自己研究7.SDK配置里可以配置你的项目的appid、key其他配置,比如你的项目…

    2022年4月14日
    175
  • java decimal保留两位小数_bigdecimal两位小数

    java decimal保留两位小数_bigdecimal两位小数那么,如何学习Kafka源码??我觉得最高效的方式就是去读最核心的源码,先看一张 Kafka结构图 以及 Kafka源码全景图梳理一下关于 Kafka框架,找到学习的重点。其次,我要说的就是一个Kafka源码解析的文档——《Kafka源码解析与实战》前5章分别是:Kafka简介、Kafka的架构、Broker概述、Broker的基本模块、Broker的控制管理模块**第1章Kafka简介:**介绍Kafka诞生的背景、Kafka在Linked

    2022年9月23日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号