内膜厚回声均匀会是癌_内膜回声均匀是不会病变是吗

内膜厚回声均匀会是癌_内膜回声均匀是不会病变是吗下载数据集fromtorchvision.datasetsimportmnisttrain_set=mnist.MNIST(‘./data’,train=True,download=True)#若未找到数据集则自动下载test_set=mnist.MNIST(‘./data’,train=False,download=True)

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

在这里插入图片描述

在这里插入图片描述

回声状态网络

状态方程

在这里插入图片描述

输出方程

在这里插入图片描述

分类问题

在这里插入图片描述

加载 MNIST 数据集

from torchvision.datasets import mnist 

train_set = mnist.MNIST('./data', train=True, download=True)    # 若未找到数据集 则自动下载
test_set = mnist.MNIST('./data', train=False, download=True)

print(train_set.data.shape,  train_set.targets.shape)
""" (torch.Size([60000, 28, 28]), torch.Size([60000])) """

同时也下载到了本地
在这里插入图片描述

标签 onehot 编码

data = train_set.data.numpy()
labels = train_set.targets.numpy().reshape(-1,1)
enc = OneHotEncoder()
enc.fit(labels)
labels_onehot = enc.transform(labels).toarray()
""" >>> labels_onehot array([[0., 0., 0., ..., 0., 0., 0.], [1., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 1., 0.]]) """

转化成时间序列

num_train = 1000
# input
U = np.hstack(data[:num_train])/255  
# output
y = np.hstack([np.array([labels_onehot[i] for _ in range(28)]).T for i in range(num_train)])  

图像是28 * 28 的,通过拼接,作为输入的 28 维时间序列
在这里插入图片描述
预测标签为 10 维时间序列序列,长度和输入相同
在这里插入图片描述

训练 ESN

设置随机种子

import numpy as np
import matplotlib.pyplot as plt
import scipy.linalg
import random

def set_seed(seed=None):
    """Making the seed (for random values) variable if None"""

    # Set the seed
    if seed is None:
        import time
        seed = int((time.time()*10**6) % 10**12)
        
    try:
        random.seed(seed) #np.random.seed(seed)
        print("Seed used for random values:", seed)
    except:
        print("!!! WARNING !!!: Seed was not set correctly.")
    return seed

开始训练

T = y.shape[1]
# generate the ESN reservoir
inSize = 28
outSize = 10 #input/output dimension
resSize = 1000 #reservoir size
a = 0.8 # leaking rate
spectral_radius = 1.25
reg = 1e-8 # regularization coefficient 
input_scaling = 1.

# change the seed, reservoir performances should be averaged accross at least 20 random instances (with the same set of parameters)
our_seed = None  # Choose a seed or None
set_seed(our_seed) 

# generation of random weights
Win = (np.random.rand(resSize,1+inSize)-0.5) * input_scaling
W = np.random.rand(resSize,resSize)-0.5

# Computing spectral radius...
rhoW = max(abs(np.linalg.eig(W)[0])) #maximal eigenvalue
W *= spectral_radius / rhoW

X = np.zeros((1+inSize+resSize,T))

# set the corresponding target matrix directly
Yt = y 

# run the reservoir with the data and collect X
x = np.zeros((resSize,1))  # initial state
for t in range(U.shape[1]):
    u = U[:,t:t+1]
    res_in = np.dot( Win, np.vstack((1,u))) + np.dot( W, x )
    res_out = sigmoid(res_in)
    x = (1-a) * x + a * res_out 
    X[:,t] = np.vstack((1,u,x))[:,0]


X_T = X.T
# use ridge regression (linear regression with regularization)
Wout = np.dot( np.dot(Yt,X_T), np.linalg.inv( np.dot(X,X_T) + reg*np.eye(1+inSize+resSize)))
import seaborn as sns
plt.figure(figsize=(20,10))
ax = sns.heatmap(X)
plt.show()
print('done')

储备池状态的时空分布

看看训练储备池状态的时空分布,下图展示前10个数字对应的 X, 第 1~28 行是原始输入,和储备池的 1000 维状态向量拼接在一起

可以观察到出现数字时,储备池的状态会有明显变化
在这里插入图片描述

测试结果

test_start = 50000
num_test = 10
U = np.hstack(data[test_start:test_start + num_test])/255
y = np.hstack([np.array([labels_onehot[i] for _ in range(28)]).T for i in range(test_start,test_start + num_test)])

输入:
在这里插入图片描述
真实标签:
在这里插入图片描述
输出结果:

T = y.shape[1]
# allocated memory for the design (collected states) matrix
X = np.zeros((1+inSize+resSize,T))

x = np.zeros((resSize,1))
for t in range(U.shape[1]):
    u = U[:,t:t+1]
    res_in = np.dot( Win, np.vstack((1,u))) + np.dot( W, x )
    res_out = sigmoid(res_in)
    x = (1-a) * x + a * res_out       
    X[:,t] = np.vstack((1,u,x))[:,0]

pred = Wout @ X
plt.figure(figsize=(20,5))
sns.heatmap(np.vstack([pred,y]))
plt.show()

在这里插入图片描述
结果中 10 个对了 9 个,其中预测错误的第七个样本把 5 判别成 8
在这里插入图片描述

在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/184272.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • nginx重启服务器服务命令

    nginx重启服务器服务命令systemctlrestartnginx.service

    2022年6月19日
    20
  • SSAS介绍

    SSAS介绍文章提纲 商业智能 BI BusinessInte 基本概念 SSAS SQLServerAna 相关工具 开发 管理和客户端 总结 一 商业智能 BI BusinessInte 基本概念商业智能的概念在 1996 年最早由加特纳集团 GartnerGroup 提出 加特纳集团将商业智能定义为 商业智能描述了一系列的概念和方法 通过应用基于事实的支持系统来辅助商业决策的制定 商业智能技术提供使企业

    2025年10月2日
    2
  • Lotus Notes视图索引的机制

    Lotus Notes视图索引的机制
    内容提要:
    本文对视图的索引机制进行说明。包括:术语、索引的机制、视图索引的选项说明。
    说明
    视图索引的机制
    第1章概述
    本文档主要是对视图的索引机制进行说明。包括:术语、索引的机制、视图索引的选项说明。
    文档中用到的术语:
    更新(Refresh):按F9可以刷新视图的索引。Refresh读视图的索引并刷新用户的屏幕。它不会重建视图的索引。
    重建(Rebuild):按Shift+F9可以重建视图的索引。重建视

    2022年7月22日
    19
  • m3u8合并解密 TS视频文件分片合并解密

    m3u8合并解密 TS视频文件分片合并解密m3u8合并解密qq群:366950911图片:合并成功

    2022年6月29日
    111
  • linux中env命令_centos7环境变量配置

    linux中env命令_centos7环境变量配置env命令linux系统中的环境变量是很多的,就算是一些常用的环境变量我们也不一定能记得全名。env命令可以显示当前操作系统所有的环境变量,下面的示例代码是Ubuntu系统的。示例dai@ubuntu:~$envUSER=daiXDG_SESSION_PATH=/org/freedesktop/DisplayManager/Session0XDG_SEAT_PATH=/org/freedesktop/DisplayManager/Seat0SSH_AUTH_SOCK=/run/user/

    2022年10月1日
    6
  • springboot 之 使用jasypt加密解密插件[通俗易懂]

    springboot 之 使用jasypt加密解密插件[通俗易懂]简单使用jasypt是一个java实现的安全框架1、该工具支持注解方式开启jasypt功能,以及注解方式引入一个或多个需要处理的配置文件。 2、该工具同时支持properties与yml文件的解析处理。 3、该工具支持自定义加解密类型和复写加解密方法。引入插件<dependency> <groupId>com.github.ulisesbocchio&…

    2022年9月25日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号