pytorch训练过程可视化_行人重识别国内外研究现状

pytorch训练过程可视化_行人重识别国内外研究现状下载MGN-pytorch:https://github.com/seathiefwang/MGN-pytorch下载Market1501数据集:http://www.liangzheng.org/Project/project_reid.html模型训练,修改demo.sh,将–datadir修改已下载的Market1501数据集地址,将修改CUDA_VISIBLE_DEVICES=2,…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

下载MGN-pytorch:https://github.com/seathiefwang/MGN-pytorch

下载Market1501数据集:http://www.liangzheng.org/Project/project_reid.html

模型训练,修改demo.sh,将 --datadir修改已下载的Market1501数据集地址,将修改CUDA_VISIBLE_DEVICES=2,3自己的GPU设备ID,将修改--nGPU自己的GPU数量。

部分demo.sh示例:

#mAP: 0.9204 rank1: 0.9469 rank3: 0.9664 rank5: 0.9715 rank10: 0.9780 (Best: 0.9204 @epoch 4)
#CUDA_VISIBLE_DEVICES=2,3 python3 main.py --reset --datadir /home/hylink/eclipse-workspace/Market/ --batchid 16 --batchtest 32 --test_every 40 --epochs 160 --decay_type step_120_140 --loss 1*CrossEntropy+2*Triplet --margin 0.3 --re_rank --random_erasing --save MGN_adam --nGPU 2  --lr 2e-4 --optimizer ADAM

CUDA_VISIBLE_DEVICES=0 python main.py --reset --datadir /home/hyli
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/185375.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号