Maskrcnn中resnet50改为resnet34「建议收藏」

Maskrcnn中resnet50改为resnet34「建议收藏」因需要训练的数据集并不复杂,resnet50的结构有点冗余,于是就把maskrcnn的backbone从resnet50改为resnet34结构。找到model文件,将resnet50部分代码做一定的修改,就可以得到resnet34的相关代码下面是相关代码:##con_block修改为conv_block0并添加到model文件中defconv_block0(input_tensor…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

找到很多关于maskrcnn具体用法的代码,但是全是基于resnet50/101的,因需要训练的数据集并不复杂,resnet50的结构有点冗余,于是就把maskrcnn的backbone从resnet50改为resnet34结构。
找到model文件,将resnet50(侵删)部分代码做一定的修改,就可以得到resnet34的相关代码
下面是相关代码:


## con_block修改为conv_block0并添加到model文件中
def conv_block0(input_tensor, kernel_size, filters, stage, block,
               strides, use_bias=True, train_bn=True):
    nb_filter1, nb_filter2 = filters
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'

    x = KL.Conv2D(nb_filter1, (kernel_size, kernel_size),padding='same',strides=strides,
                  name=conv_name_base + '2a', use_bias=use_bias)(input_tensor)
    x = BatchNorm(name=bn_name_base + '2a')(x, training=train_bn)
    x = KL.Activation('relu')(x)

    x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size),padding='same',
                  name=conv_name_base + '2b', use_bias=use_bias)(x)
    x = BatchNorm(name=bn_name_base + '2b')(x, training=train_bn)

    shortcut = KL.Conv2D(nb_filter2, (1, 1), strides=strides, padding='same',
                         name=conv_name_base + '1', use_bias=use_bias)(input_tensor)
    shortcut = BatchNorm(name=bn_name_base + '1')(shortcut, training=train_bn)

    x = KL.Add()([x,shortcut ])
    x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x)

    return x
    
## identity_block修改为identity_block0,并添加
def identity_block0(input_tensor, kernel_size, filters,  stage, block,
                   use_bias=True, train_bn=True):
 
    nb_filter1, nb_filter2 = filters
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'


    x = KL.Conv2D(nb_filter1, (kernel_size, kernel_size),name=conv_name_base + '2a',
                  padding='same',

                  use_bias=use_bias)(input_tensor)
    x = BatchNorm(name=bn_name_base + '2a')(x, training=train_bn)
    x = KL.Activation('relu')(x)


    x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), name=conv_name_base + '2b',padding='same',

                  use_bias=use_bias)(x)
    x = BatchNorm(name=bn_name_base + '2b')(x, training=train_bn)
    x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x)

    x = KL.Add()([x, input_tensor])

    return x

# 将resnet_graph改为

def resnet_graph(input_image, architecture, stage5=False, train_bn=True):
    """Build a ResNet graph. architecture: Can be resnet50 or resnet101 stage5: Boolean. If False, stage5 of the network is not created train_bn: Boolean. Train or freeze Batch Norm layers """
    assert architecture in ["resnet34", "resnet50", "resnet101"]
    block_identify = { 
   "resnet34": 0, "resnet50": 1, "resnet101": 1}[architecture]
    # Stage 1
    x = KL.ZeroPadding2D((3, 3))(input_image)
    x = KL.Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x)
    x = BatchNorm(name='bn_conv1')(x, training=train_bn)
    x = KL.Activation('relu')(x)
    C1 = x = KL.MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x)

    # Stage 2
    if block_identify == 0:
        x = conv_block0(x, 3, [64,64], stage=2, block='a',strides=(1, 1),train_bn=train_bn)
        x = identity_block0(x, 3, [64,64], stage=2, block='b', train_bn=train_bn)
        C2 = x = identity_block0(x, 3, [64,64], stage=2, block='c',train_bn=train_bn)

    else:
        x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), train_bn=train_bn)
        x = identity_block(x, 3, [64, 64, 256], stage=2, block='b',train_bn=train_bn)
        C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', train_bn=train_bn)

    # Stage 3
    if block_identify == 0:
        x = conv_block0(x, 3, [128,128], stage=3, block='a', strides=(2, 2),train_bn=train_bn)
        x = identity_block0(x, 3, [128,128], stage=3, block='b', train_bn=train_bn)
        x = identity_block0(x, 3, [128,128], stage=3, block='c', train_bn=train_bn)
        C3 = x = identity_block0(x, 3, [128,128], stage=3, block='d', train_bn=train_bn)

    else:
        x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', train_bn=train_bn)
        x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', train_bn=train_bn)
        x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', train_bn=train_bn)
        C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', train_bn=train_bn)


    # Stage 4
    block_count = { 
   "resnet34": 5, "resnet50": 5, "resnet101": 22}[architecture]
    if block_identify == 0:
        x = conv_block0(x, 3, [256,256], stage=4, block='a', strides=(2, 2),train_bn=train_bn)
        for i in range(block_count):
            x = identity_block0(x, 3, [256,256], stage=4, block=chr(98 + i), train_bn=train_bn)
        C4 = x


    else:
        x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', train_bn=train_bn)
        for i in range(block_count):
            x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98 + i), train_bn=train_bn)
        C4 = x


    # Stage 5
    if stage5:
        if block_identify == 0:
            x = conv_block0(x, 3, [512,512], stage=5, block='a', strides=(2, 2),train_bn=train_bn)
            x = identity_block0(x, 3, [512,512], stage=5, block='b', train_bn=train_bn)
            C5 = x = identity_block0(x, 3, [512,512], stage=5, block='c', train_bn=train_bn)

        else:
            x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a', train_bn=train_bn)
            x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b', train_bn=train_bn)
            C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c', train_bn=train_bn)

    else:
        C5 = None

    return [C1, C2, C3, C4, C5]




注:
1.初始化权重时我使用的是
https://github.com/qubvel/classification_models/releases/download/0.0.1/resnet34_imagenet_1000.h5
2.compute_backbone_shapes中也要加入resnet34

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/185483.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 常用网络工具

    常用网络工具这里是计算机网络的一些相关工具的用途和使用方法,很简洁。

    2022年6月20日
    27
  • 给定一个ip地址,子网掩码怎么算网络号(如何获取ip地址和子网掩码)

    1.Internet上每一台计算机都有唯一的地址来标识它的身份,即IP地址,使用域名其实也是要转化为IP地址的。2.IP地址分类:A类:000~127,默认子网掩码:255.0.0.0B类:128~191,默认子网掩码:255.255.0.0C类:192~223,默认子网掩码:255.255.255.0D类:224~239E类:240~255 3.假设现有一IP地址180.21…

    2022年4月16日
    50
  • 我的博客文章快速索引[通俗易懂]

    我的博客文章快速索引[通俗易懂]授人以鱼不如授人以渔,目的不是为了教会你具体项目开发,而是学会学习的能力。希望大家分享给你周边需要的朋友或者同学,说不定大神成长之路有博哥的奠基石。。。    为了方便大家了解最新博客内容,博哥在此置顶汇总贴,方便大家查阅所需内容。    此贴,大家可以看到博哥近期的进展情况:待写(计划写中)目前正在写(表示已经有初稿)期待中(表示正在考虑)一、你如果想学基于Arduino的E…

    2022年5月29日
    31
  • 2.海龟作图—-用Python绘图[通俗易懂]

    2.海龟作图—-用Python绘图[通俗易懂]第一个海龟程序 #SquareSpiral1.py画一个正方形螺旋线importturtlet=turtle.Pen()forxinrange(1,100):#1<=x<100t.forward(x)t.left(90) 旋转的海龟 #SquareSpiral2.pyimportturtlet=turtle.Pen()forxinrange(100):t.forward(x)t.le…

    2022年6月28日
    29
  • MATLAB图像识别_多模态图像配准

    MATLAB图像识别_多模态图像配准基于SIFT特征的图像配准(附Matlab源代码) 本文先给出了采用SIFT方法进行图像配准的实验原图以及实验结果,最后附上Matlab源代码。 实验一:      实验一的图像(见图1.1)是本人自己拍摄的,然后由软件裁剪成400×400像素而成,其中参考图像和待配准图像之间有重叠部分,且具有一定的旋转。这是一般难度的图像配准。

    2025年5月29日
    4
  • convert dynamic命令在win10不可用_对目标文件系统,文件win7.gho过大

    convert dynamic命令在win10不可用_对目标文件系统,文件win7.gho过大全平台通过Termius,你可以安卓、Windows、macOS、Linux下来连接你的服务器,并且会在不同设备间同步,电脑做着做着要离开,换手机接着做官网链接:界面UI非常细腻win上面有xsheel,个人感觉xsheel更加强大。但是他不做Mac版本。由于在Mac上面用过Termius,所以习惯了他的界面。想要在win上面也用Termius汉化:手动方式打开当前这个js文件目录下面的这个js文件。然后全局搜索进行修改,但是一个一个改感觉麻烦创建一个termius.ini的文件,把下面这些复制进去

    2025年7月21日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号