Maskrcnn中resnet50改为resnet34「建议收藏」

Maskrcnn中resnet50改为resnet34「建议收藏」因需要训练的数据集并不复杂,resnet50的结构有点冗余,于是就把maskrcnn的backbone从resnet50改为resnet34结构。找到model文件,将resnet50部分代码做一定的修改,就可以得到resnet34的相关代码下面是相关代码:##con_block修改为conv_block0并添加到model文件中defconv_block0(input_tensor…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

找到很多关于maskrcnn具体用法的代码,但是全是基于resnet50/101的,因需要训练的数据集并不复杂,resnet50的结构有点冗余,于是就把maskrcnn的backbone从resnet50改为resnet34结构。
找到model文件,将resnet50(侵删)部分代码做一定的修改,就可以得到resnet34的相关代码
下面是相关代码:


## con_block修改为conv_block0并添加到model文件中
def conv_block0(input_tensor, kernel_size, filters, stage, block,
               strides, use_bias=True, train_bn=True):
    nb_filter1, nb_filter2 = filters
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'

    x = KL.Conv2D(nb_filter1, (kernel_size, kernel_size),padding='same',strides=strides,
                  name=conv_name_base + '2a', use_bias=use_bias)(input_tensor)
    x = BatchNorm(name=bn_name_base + '2a')(x, training=train_bn)
    x = KL.Activation('relu')(x)

    x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size),padding='same',
                  name=conv_name_base + '2b', use_bias=use_bias)(x)
    x = BatchNorm(name=bn_name_base + '2b')(x, training=train_bn)

    shortcut = KL.Conv2D(nb_filter2, (1, 1), strides=strides, padding='same',
                         name=conv_name_base + '1', use_bias=use_bias)(input_tensor)
    shortcut = BatchNorm(name=bn_name_base + '1')(shortcut, training=train_bn)

    x = KL.Add()([x,shortcut ])
    x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x)

    return x
    
## identity_block修改为identity_block0,并添加
def identity_block0(input_tensor, kernel_size, filters,  stage, block,
                   use_bias=True, train_bn=True):
 
    nb_filter1, nb_filter2 = filters
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'


    x = KL.Conv2D(nb_filter1, (kernel_size, kernel_size),name=conv_name_base + '2a',
                  padding='same',

                  use_bias=use_bias)(input_tensor)
    x = BatchNorm(name=bn_name_base + '2a')(x, training=train_bn)
    x = KL.Activation('relu')(x)


    x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), name=conv_name_base + '2b',padding='same',

                  use_bias=use_bias)(x)
    x = BatchNorm(name=bn_name_base + '2b')(x, training=train_bn)
    x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x)

    x = KL.Add()([x, input_tensor])

    return x

# 将resnet_graph改为

def resnet_graph(input_image, architecture, stage5=False, train_bn=True):
    """Build a ResNet graph. architecture: Can be resnet50 or resnet101 stage5: Boolean. If False, stage5 of the network is not created train_bn: Boolean. Train or freeze Batch Norm layers """
    assert architecture in ["resnet34", "resnet50", "resnet101"]
    block_identify = { 
   "resnet34": 0, "resnet50": 1, "resnet101": 1}[architecture]
    # Stage 1
    x = KL.ZeroPadding2D((3, 3))(input_image)
    x = KL.Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x)
    x = BatchNorm(name='bn_conv1')(x, training=train_bn)
    x = KL.Activation('relu')(x)
    C1 = x = KL.MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x)

    # Stage 2
    if block_identify == 0:
        x = conv_block0(x, 3, [64,64], stage=2, block='a',strides=(1, 1),train_bn=train_bn)
        x = identity_block0(x, 3, [64,64], stage=2, block='b', train_bn=train_bn)
        C2 = x = identity_block0(x, 3, [64,64], stage=2, block='c',train_bn=train_bn)

    else:
        x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), train_bn=train_bn)
        x = identity_block(x, 3, [64, 64, 256], stage=2, block='b',train_bn=train_bn)
        C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', train_bn=train_bn)

    # Stage 3
    if block_identify == 0:
        x = conv_block0(x, 3, [128,128], stage=3, block='a', strides=(2, 2),train_bn=train_bn)
        x = identity_block0(x, 3, [128,128], stage=3, block='b', train_bn=train_bn)
        x = identity_block0(x, 3, [128,128], stage=3, block='c', train_bn=train_bn)
        C3 = x = identity_block0(x, 3, [128,128], stage=3, block='d', train_bn=train_bn)

    else:
        x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', train_bn=train_bn)
        x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', train_bn=train_bn)
        x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', train_bn=train_bn)
        C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', train_bn=train_bn)


    # Stage 4
    block_count = { 
   "resnet34": 5, "resnet50": 5, "resnet101": 22}[architecture]
    if block_identify == 0:
        x = conv_block0(x, 3, [256,256], stage=4, block='a', strides=(2, 2),train_bn=train_bn)
        for i in range(block_count):
            x = identity_block0(x, 3, [256,256], stage=4, block=chr(98 + i), train_bn=train_bn)
        C4 = x


    else:
        x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', train_bn=train_bn)
        for i in range(block_count):
            x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98 + i), train_bn=train_bn)
        C4 = x


    # Stage 5
    if stage5:
        if block_identify == 0:
            x = conv_block0(x, 3, [512,512], stage=5, block='a', strides=(2, 2),train_bn=train_bn)
            x = identity_block0(x, 3, [512,512], stage=5, block='b', train_bn=train_bn)
            C5 = x = identity_block0(x, 3, [512,512], stage=5, block='c', train_bn=train_bn)

        else:
            x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a', train_bn=train_bn)
            x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b', train_bn=train_bn)
            C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c', train_bn=train_bn)

    else:
        C5 = None

    return [C1, C2, C3, C4, C5]




注:
1.初始化权重时我使用的是
https://github.com/qubvel/classification_models/releases/download/0.0.1/resnet34_imagenet_1000.h5
2.compute_backbone_shapes中也要加入resnet34

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/185483.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • vs 安装包_vs离线安装包

    vs 安装包_vs离线安装包VS安装包注册com组件VS安装包注册com组件1.把你的com组件加入到打包程序。 2.在打包程序中找到该com组件,点击属性。在属性中有Register项,把值选择为vsdrfCOM即可。

    2022年10月13日
    1
  • Spring的AOP实现原理

    Spring的AOP实现原理本学习笔记将尽可能的将AOP的知识讲解的通俗易懂,先从一个典型的问题出发,引入AOP这个概念,介绍AOP的基本概念,再到Spring中的AOP的实现方案,最后进行一个简单的总结归纳。本学习笔记中不考虑cglib、也不会太关注SpringAOP如何使用,而是尽可能的简单的说清楚AOP的工作原理。笔记中贴出的源代码均是Spring5.1.7-RELEASE版本问题提出如下代码块,现在需要统计这个方法执行的耗时情况publicvoidrunTask(){doSome

    2022年9月18日
    2
  • 实例与数据库的区别_mysql数据库实例是什么

    实例与数据库的区别_mysql数据库实例是什么mysql目前是开源界应用最为广泛的数据库软件了。相对于重量级的商业产品如oracle、DB2、SQLServer等,Mysql最大的特点就是开源免费。个人用户可以down一个下来,自己搭个网站玩玩。大型互联网企业诸如阿里、网易之类的也可以针对mysql做mysql集群和存储引擎的开发。今天主要是想解释一下mysql体系中,数据库和数据库实例的概念。很多人都在用mysql,也有很多人认为数据库就…

    2022年10月21日
    2
  • 【matlab安装】手把手图文并茂安装matlab2021(win10版)

    【matlab安装】手把手图文并茂安装matlab2021(win10版)本文介绍matlab的安装。

    2022年6月18日
    43
  • simulink中积分环节、惯性环节、比例环节

    simulink中积分环节、惯性环节、比例环节simulink中积分环节、惯性环节、比例环节的搭建

    2022年9月28日
    2
  • java jersey,java Jersey

    java jersey,java Jersey场景:用Jersey构建RESTful服务3-JAVA对象转成JSON输出用Jersey构建RESTful服务3–JAVA对象转成JSON输出一、总体说明XML和JSON是最为常用的数据交换格式。本例子演示如何将java对象,转成JSON输出。二、流程1.在上文项目中,在“com.waylau.rest.resources.UserResource“中增加代码,代码如下:@GET@Path(…

    2022年7月27日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号