深度学习优化策略—权重、权重初始化与权重衰减「建议收藏」

深度学习优化策略—权重、权重初始化与权重衰减「建议收藏」Nobiasdecay:一般来说,权重衰减会用到网络中所有需要学习的参数上面。然而仅仅将权重衰减用到卷积层和全连接层,不对biases,BN层的\gamma,\beta做权重衰减,效果会更好。BagofTricksforImageClassificationwithConvolutionalNeuralNetworks…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

权重的维度保持为 2 的幂

即便是运行最先进的深度学习模型,使用最新、最强大的计算硬件,内存管理仍然在字节(byte)级别上进行。所以,把参数保持在 64, 128, 512, 1024 等 2 的次方永远是件好事。这也许能帮助分割矩阵和权重,导致学习效率的提升。当用 GPU 运算,这变得更明显。

权重初始化 (Weight Initialization)

永远用小的随机数字初始化权重,以打破不同单元间的对称性(symmetry)。但权重应该是多小呢?推荐的上限是多少?用什么概率分布产生随机数字?

当使用 Sigmoid 激励函数时,如果权重初始化为很大的数字,那么 sigmoid 会饱和(尾部区域),导致死神经元(dead neurons)。如果权重特别小,梯度也会很小。因此,最好是在中间区域选择权重,比如说那些围绕平均值均衡分布的数值。
参数初始化应该使得各层激活值不会出现饱和现象且激活值不为0。我们把这两个条件总结为参数初始化条件:

初始化必要条件一:各层激活值不会出现饱和现象。
初始化必要条件二:各层激活值不为0。

tensorflow几种普通的参数初始化方法

1.  tf.constant_initializer() 常数初始化
2.  tf.ones_initializer()1初始化
3. tf.zeros_initializer()0初始化
4. tf.random_uniform_initializer() 均匀分布初始化
5. tf.random_normal_initializer() 正态分布初始化
6. tf.truncated_normal_initializer() 截断正态分布初始化
7. tf.uniform_unit_scaling_initializer() 这种方法输入方差是常数
8. tf.variance_scaling_initializer() 自适应初始化
9. tf.orthogonal_initializer() 生成正交矩阵

Xavier初始化和 MSRA初始化(He初始化)

1、Xavier初始化:
优点:这个初始化器是用来保持每一层的梯度大小都差不多相同。通过使用这种初始化方法,可以避免梯度在最后一层网络中爆炸或者弥散

条件:正向传播时,激活值的方差保持不变;反向传播时,关于状态值的梯度的方差保持不变。
初始化方法:
W ∼ U [ − 6 n i + n i + 1 , 6 n i + n i + 1 ] W \sim U\left[-\frac{\sqrt{6}}{\sqrt{n_{i}+n_{i+1}}}, \frac{\sqrt{6}}{\sqrt{n_{i}+n_{i+1}}}\right] WU[ni+ni+1
6
,ni+ni+1
6
]

假设激活函数关于0对称,且主要针对于全连接神经网络。适用于tanh和softsign
论文地址:Understanding the difficulty of training deep feedforward neural networks
在这里插入图片描述

2、He初始化:
条件:正向传播时,状态值的方差保持不变;反向传播时,关于激活值的梯度的方差保持不变。
适用于ReLU的初始化方法:
W ∼ N [ 0 , 2 n i i ^ ] W \sim N\left[0, \sqrt{\frac{2}{n_{i} \hat{i}}}\right] WN[0,nii^2
]

适用于Leaky ReLU的初始化方法:
W ∼ N [ 0 , 2 ( 1 + α 2 ) n ^ i ] W \sim N\left[0, \sqrt{\frac{2}{\left(1+\alpha^{2}\right) \hat{n}_{i}} ]}\right. WN[0,(1+α2)n^i2]

n ^ i = h i ∗ w i ∗ d i \hat{n}_{i}=h_{i} * w_{i} * d_{i} n^i=hiwidi

h i , w i h_{i}, w_{i} hi,wi分别表示卷积层中卷积核的高和宽,而di为当前层卷积核的个数。
在这里插入图片描述
论文地址:Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
在这里插入图片描述

权重衰减(weight decay)

参考:权重衰减(weight decay)与学习率衰减(learning rate decay)

L2正则化的目的就是为了让权重衰减到更小的值,在一定程度上减少模型过拟合的问题,所以权重衰减也叫L2正则化。

L2正则化与权重衰减系数

L2正则化就是在代价函数后面再加上一个正则化项:
在这里插入图片描述
其中C0代表原始的代价函数,后面那一项就是L2正则化项,它是这样来的:所有参数w的平方的和,除以训练集的样本大小n。λ就是正则项系数,权衡正则项与C0项的比重。另外还有一个系数1/2,1/2 1/211经常会看到,主要是为了后面求导的结果方便,后面那一项求导会产生一个2,与1/2相乘刚好凑整为1。系数λ就是权重衰减系数

为什么可以给权重带来衰减

在这里插入图片描述

权重衰减(L2正则化)的作用

作用:权重衰减(L2正则化)可以避免模型过拟合问题。
思考:L2正则化项有让w变小的效果,但是为什么w变小可以防止过拟合呢?
原理:(1)从模型的复杂度上解释:更小的权值w,从某种意义上说,表示网络的复杂度更低,对数据的拟合更好(这个法则也叫做奥卡姆剃刀),而在实际应用中,也验证了这一点,L2正则化的效果往往好于未经正则化的效果。(2)从数学方面的解释:过拟合的时候,拟合函数的系数往往非常大,为什么?如下图所示,过拟合,就是拟合函数需要顾忌每一个点,最终形成的拟合函数波动很大。在某些很小的区间里,函数值的变化很剧烈。这就意味着函数在某些小区间里的导数值(绝对值)非常大,由于自变量值可大可小,所以只有系数足够大,才能保证导数值很大。而正则化是通过约束参数的范数使其不要太大,所以可以在一定程度上减少过拟合情况。
在这里插入图片描述

No bias decay:

一般来说,权重衰减会用到网络中所有需要学习的参数上面。然而仅仅将权重衰减用到卷积层和全连接层,不对biases,BN层的 \gamma, \beta 做权重衰减,效果会更好。
Bag of Tricks for Image Classification with Convolutional Neural Networks

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/185613.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 激活webstrom(已测有效)[通俗易懂]

    激活webstrom(已测有效),https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月14日
    71
  • python处理异常的关键字_如果抛出异常应用哪些关键字

    python处理异常的关键字_如果抛出异常应用哪些关键字一.抛出异常Python用异常对象(exceptionobject)表示异常情况,遇到错误后,会引发异常。如果异常对象并未被处理或捕捉,程序就会用所谓的回溯(Traceback,一种错误信息)终止执行。raise语句Python中的raise关键字用于引发一个异常,基本上和C#和Java中的throw关键字相同,如下所示:importtracebackdefthrow_error():…

    2022年10月18日
    0
  • db4o的使用

    db4o的使用from:http://www.ibm.com/developerworks/cn/java/j-lo-db4o2/index.html前言在 db4o之旅 系列文章的第一部分:初识db4o 中,作者介绍了db4o的历史和现状,应用领域,以及和ORM等的比较。在这篇文章中,作者将会介绍db4o的安装、启动以及三种不同的查询方式:QBE(QuerybyEx

    2022年7月21日
    18
  • c语言中ff用16进制怎么表示什么,0xff(十六进制0xff表示什么)

    c语言中ff用16进制怎么表示什么,0xff(十六进制0xff表示什么)0xff从数值上看,0xff表示一个十六进制数FF,也就是十进制的255。从电平高低来看,比如读取P1口得到0xFF,表示P1口8个引脚都是高电平。以0x开始的数据表示16进制,0xff换成十进制为255。A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15。16进制变十进制:f表示15。第n位的权值为16的n次方,由右.我现在要把这个16进制的数转换成2进制的或者是10…

    2022年6月19日
    101
  • python3换行符_python的换行符

    python3换行符_python的换行符广告关闭提供包括云服务器,云数据库在内的50+款云计算产品。打造一站式的云产品试用服务,助力开发者和企业零门槛上云。我想匹配以下内容:参考编号8号长任何角色,任何次数新队任何角色,任何次数新队任何角色,任何次数新队任何角色,任何次数新队任何角色,任何次数我的python代码是:forminre.findall({8}.*n.*n.*n.*n.*,l,re.dot…

    2022年5月23日
    67
  • flutter下载图片到本地_禁止拍照上传图片

    flutter下载图片到本地_禁止拍照上传图片/Ios、Android应用权限开启流程/IOS应用(询问权限、开启权限)Android应用(询问权限、开启权限)/自定义选择相机和相册的对话框/创建一个存放对话框标题、相册拍照选项、关闭对话框的集合[{‘label’:’${titLab??’上传有效凭证’}’},{‘label’:’拍照’},{‘label’:’从手机相册选择’},{‘label’:’取消’},…

    2022年9月23日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号