ReadProcessMemory函数的分析「建议收藏」

ReadProcessMemory函数的分析「建议收藏」ReadProcessMemory函数用于读取其他进程的数据。我们知道自远古时代结束后,user模式下的进程都有自己的地址空间,进程与进程间互不干扰,这叫私有财产神圣不可侵犯。但windows里还真就提供了那么一个机制,让你可以合法的获取别人的私有财产,这就是ReadProcessMemory和WriteProcessMemory。为什么一个进程居然可以访问另一个进程的地址空间呢?因为独立的只是低

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

ReadProcessMemory函数用于读取其他进程的数据。我们知道自远古时代结束后,user模式下的进程都有自己的地址空间,进程与进程间互不干扰,这叫私有财产神圣不可侵犯。但windows里还真就提供了那么一个机制,让你可以合法的获取别人的私有财产,这就是ReadProcessMemory和WriteProcessMemory。为什么一个进程居然可以访问另一个进程的地址空间呢?因为独立的只是低2G的用户态空间,高2G的内核态空间是所有进程共享的。一段执行中的线程进入内核态后,它可以拿到别人的cr3寄存器,用该cr3替换自己的cr3便完成了地址空间的转换。理论说明完毕,下面来看实现细节:gussing.cnblogs.com

BOOL
STDCALL
ReadProcessMemory (
	HANDLE	hProcess,
	LPCVOID	lpBaseAddress,
	LPVOID	lpBuffer,
	DWORD	nSize,
	LPDWORD	lpNumberOfBytesRead
	)
{

	NTSTATUS Status;

	Status = NtReadVirtualMemory( hProcess, (PVOID)lpBaseAddress,lpBuffer, nSize,
		(PULONG)lpNumberOfBytesRead
		);

	if (!NT_SUCCESS(Status))
     	{
		SetLastErrorByStatus (Status);
		return FALSE;
     	}
	return TRUE;
}
 
这是用户态ReadProcessMemory的实现,它只做了一件事那就是调用NtReadVirtualMemory。NtReadVirtualMemory函数位于ntdll中,属于所谓的桩函数,
作用就是把用户态的函数调用翻译成相应的系统调用,进入内核态。内核中一般有一个相同名字的处理函数,接收到该类型的系统调用后做实际的工作。系统调用
的细节按下不表,让我们来看NtReadVirtualMemory到底在做什么事情:gussing.cnblogs.com
NTSTATUS STDCALL
NtReadVirtualMemory(IN HANDLE ProcessHandle,
                    IN PVOID BaseAddress,
                    OUT PVOID Buffer,
                    IN ULONG NumberOfBytesToRead,
                    OUT PULONG NumberOfBytesRead)
{
   NTSTATUS Status;
   PMDL Mdl;
   PVOID SystemAddress;
   PEPROCESS Process;

   DPRINT("NtReadVirtualMemory(ProcessHandle %x, BaseAddress %x, "
          "Buffer %x, NumberOfBytesToRead %d)\n",ProcessHandle,BaseAddress,
          Buffer,NumberOfBytesToRead);

   Status = ObReferenceObjectByHandle(ProcessHandle,
                                      PROCESS_VM_WRITE,
                                      NULL,
                                      UserMode,
                                      (PVOID*)(&Process),
                                      NULL);
 
   if (Status != STATUS_SUCCESS)
   {
      return(Status);
   }
ObReferenceObjectByHandle函数从代表目标进程的handle里获取EPROCESS类型的指针,存放在变量Process中。EPROCESS结构保存了能代表一个进程的
几乎所有关键数据,包括我们这里急需的cr3。gussing.cnblogs.com
struct _EPROCESS
{
  /* Microkernel specific process state. */
  KPROCESS              Pcb;                          /* 000 */
。。。/*其他*/
typedef struct _KPROCESS 
{
  /* So it's possible to wait for the process to terminate */
  DISPATCHER_HEADER 	DispatcherHeader;             /* 000 */
  /* 
   * Presumably a list of profile objects associated with this process,
   * currently unused.
   */
  LIST_ENTRY            ProfileListHead;              /* 010 */
  /*
   * We use the first member of this array to hold the physical address of
   * the page directory for this process.
   */
  PHYSICAL_ADDRESS      DirectoryTableBase;           /* 018 这是cr3*/
。。。/*其他*/
接下来是从目标地址里创建一个MDL并将其锁定在主存里:gussing.cnblogs.com
   Mdl = MmCreateMdl(NULL,
                     Buffer,
                     NumberOfBytesToRead);
   MmProbeAndLockPages(Mdl,
                       UserMode,
                       IoWriteAccess);
为什么要创建这个MDL?等会儿再说。
然后是最关键的一步,当前线程要当逃兵,叛逃至目标进程里了。。。gussing.cnblogs.com
   KeAttachProcess(Process);
执行完KeAttachProcess后,当前线程就成了Process进程所属的线程了,悲剧啊。怎么着咱们就被策反了呢?细节我们等下再看,让我们完成主逻辑先。gussing.cnblogs.com
   SystemAddress = MmGetSystemAddressForMdl(Mdl);
   memcpy(SystemAddress, BaseAddress, NumberOfBytesToRead);
   KeDetachProcess();
   if (Mdl->MappedSystemVa != NULL)
   {
      MmUnmapLockedPages(Mdl->MappedSystemVa, Mdl);
   }
   MmUnlockPages(Mdl);
   ExFreePool(Mdl);

   ObDereferenceObject(Process);

   *NumberOfBytesRead = NumberOfBytesToRead;
   return(STATUS_SUCCESS);
}
attach到目标进程里之后,我们又从之前生成好的MDL里获取一个虚拟地址映射,然后执行memcpy操作。这下为什么要创建MDL的秘密就清楚了,假如我们直接这样
写memcpy:gussing.cnblogs.com
   memcpy(Buffer, BaseAddress, NumberOfBytesToRead);
看着好像没什么问题,其实问题很大。Buffer所代表的地址应该是前一个进程空间里的,但现在确实新进程空间里的,根本不是一回事。我们费劲拷贝
过去的数据,其实位于错误的内存里,等KeDetachProcess执行完切回原来的进程空间后,这些数据就全丢了,找都没地方找去。所以我们应该先从Buffer里
生成一个MDL,切换进程完成后再从该MDL里反生成一个Virtual Address,然后memcpy就可以正确的将数据拷贝到该去的地方了。
完成内存拷贝后,KeDetachProcess函数又将我们的线程从Process进程转回原来的进程,这下好,数据也偷到了,组织也回归了,原来这家伙是个间谍啊。。。
现在我们可以来看看KeAttachProcess函数到底做了什么事情了。核心行为很明确,那就是替换cr3,但是细节到底如何呢:gussing.cnblogs.com
VOID STDCALL
KeAttachProcess (PEPROCESS Process)
{
   KIRQL oldlvl;
   PETHREAD CurrentThread;
   PULONG AttachedProcessPageDir;
   ULONG PageDir;
   
   DPRINT("KeAttachProcess(Process %x)\n",Process);
   
   CurrentThread = PsGetCurrentThread();

   if (CurrentThread->OldProcess != NULL)
     {
	DbgPrint("Invalid attach (thread is already attached)\n");
	KEBUGCHECK(0);
     }
   
   KeRaiseIrql(DISPATCH_LEVEL, &oldlvl);

   KiSwapApcEnvironment(&CurrentThread->Tcb, &Process->Pcb);
这里我们把当前的IRQL提升到了DPC level,为的就是防止线程切换。然后调用KiSwapApcEnvironment把当前的apc队列也贴到目标进程里,按下不表。gussing.cnblogs.com
      /* The stack of the current process may be located in a page which is
      not present in the page directory of the process we're attaching to.
      That would lead to a page fault when this function returns. However,
      since the processor can't call the page fault handler 'cause it can't
      push EIP on the stack, this will show up as a stack fault which will
      crash the entire system.
      To prevent this, make sure the page directory of the process we're
      attaching to is up-to-date. */

   AttachedProcessPageDir = ExAllocatePageWithPhysPage(Process->Pcb.DirectoryTableBase);
   MmUpdateStackPageDir(AttachedProcessPageDir, &CurrentThread->Tcb);
   ExUnmapPage(AttachedProcessPageDir);
接下来如注释所说,Process->Pcb.DirectoryTableBase所代表的数据很有可能正在硬盘里的,物理如何也要保证它在内存里,因为函数返回时要做栈操作,
如果Process->Pcb.DirectoryTableBase在硬盘上,栈操作就会引起page fault,而处理page fault前又必须要push eip,悲剧就要发生了。同样的,
stack base 和 stack top这两哥们也一定得在内存里,MmUpdateStackPageDir做的就是这个事情。gussing.cnblogs.com
   CurrentThread->OldProcess = PsGetCurrentProcess();
   CurrentThread->ThreadsProcess = Process;
   PageDir = Process->Pcb.DirectoryTableBase.u.LowPart;
   DPRINT("Switching process context to %x\n",PageDir);
   Ke386SetPageTableDirectory(PageDir);
   KeLowerIrql(oldlvl);
}
最后做的事情就简单了,把当前线程的ThreadsProcess换成新的,再把当前的cr3换成Process->Pcb.DirectoryTableBase.u.LowPart。一番梳妆打扮后,
敌人就分不清咱的身份了。
至此为止,ReadProcessMemory函数分析完毕。个人觉得有几个细节是需要注意的:第一呢,lpBaseAddress和lpBuffer所在的进程空间是不同的。第二呢,
KeRaiseIrql和KeLowerIrql这两个函数一定要限制在进程空间切换的函数内,绝对不能把memcpy放在它们中间,因为KeRaiseIrql之后page fault就没法处理
了,而memcpy不产生page fault那是不可能的,想都不要想。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/185918.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • WindowsAPI 之 CreatePipe、CreateProcess[通俗易懂]

    WindowsAPI 之 CreatePipe、CreateProcess[通俗易懂]MSDN介绍CreatePipeApipeisasectionofsharedmemorythatprocessesuseforcommunication.Theproce

    2022年7月1日
    19
  • 异常:java lang AbstractMethodError

    异常:java lang AbstractMethodError通常在尝试调用抽象方法时抛出此java.lang.AbstractMethodError。通常,此错误是在编译时本身识别的,如果在运行时抛出此错误,则该类必须不兼容(与先前存在的类不兼容))更改。因此,它是IncompatibleClassChangeError的子类。我们知道不能调用抽象方法,如果尝试这样做,则会收到编译时错误,因此您可能会认为在运行时如何抛出此错误?…

    2022年6月2日
    39
  • GPU利用率低的解决办法

    GPU利用率低的解决办法watch-n0.1-dnvidia-smi#检查GPU利用率参数解决办法:1.dataloader设置参数2.增大batchsize3.减少IO操作,比如tensorboard的写入和打印。4.换显卡

    2022年6月30日
    72
  • python之socket编程

    python之socket编程Socket是什么呢?socket起源于Unix,而Unix/Linux基本哲学之一就是“一切皆文件”,对于文件用【打开】【读写】【关闭】模式来操作。socket就是该模式的一个实现,socket即是一种特殊的文件,一些socket函数就是对其进行的操作(读/写IO、打开、关闭)基本上,Socket是任何一种计算机网络通讯中最基础的内容。例如当你在浏览器地址栏中输入http://…

    2022年7月13日
    16
  • pycharm-2021.3.3激活码破解方法

    pycharm-2021.3.3激活码破解方法,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月15日
    1.3K
  • 最全的js正则表达式用法大全_js正则表达式语法大全

    最全的js正则表达式用法大全_js正则表达式语法大全匹配中文字符的正则表达式:[u4e00-u9fa5]评注:匹配中文还真是个头疼的事,有了这个表达式就好办了匹配双字节字符(包括汉字在内):[^x00-xff]评注:可以用来计算字符串的长度(一个双字节字符长度计2,ASCII字符计1)匹配空白行的正则表达式:ns*r评注:可以用来删除空白行匹配HTML标记的正则表达式:]*>.*?|评注:网上流

    2025年6月1日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号