LM算法——列文伯格-马夸尔特算法(最速下降法,牛顿法,高斯牛顿法)(完美解释负梯度方向)

LM算法——列文伯格-马夸尔特算法(最速下降法,牛顿法,高斯牛顿法)(完美解释负梯度方向)首先谈一下应用场景——在拟合的时候进行应用什么是拟合?你有一堆数据点,我有一个函数,但是这个函数的很多参数是未知的,我只知道你的这些数据点都在我的函数上,因此我可以用你的数据点来求我的函数的未知参数。例如:matlab中的fit函数最小二乘法天生就是用来求拟合的,看函数和数据点的逼近关系。它通过最小化误差的平方和寻找数据的最佳函数匹配。拟合我们可以认为是一种试探性的方法,这种方法在计算机出…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

首先谈一下应用场景——在拟合的时候进行应用
什么是拟合?你有一堆数据点,我有一个函数,但是这个函数的很多参数是未知的,我只知道你的这些数据点都在我的函数上,因此我可以用你的数据点来求我的函数的未知参数。例如:matlab中的fit函数
最小二乘法天生就是用来求拟合的,看函数和数据点的逼近关系。它通过最小化误差的平方和寻找数据的最佳函数匹配进行求解。
在这里插入图片描述
拟合我们可以认为是一种试探性的方法,这种方法在计算机出来以前很多情况下是不可能实现的,为什么,因为公式涉及了大量的迭代过程,也就是我想要通过数据点求函数的参数,没有解析解能够直接代入数据求得参数,而是通过一点一点的摸索尝试,最终得到最小误差也就是最好拟合。最具有代表性的就是暴风法,把所有可能的结果都带进去,找到最好的拟合。然后聪明的人类不想这么鲁莽,并且这么无目的地寻找,于是人们开始研究参数向什么方向迭代是最好的,于是便出现了梯度方向等一系列方法。

有最速下降法、Newton 法、GaussNewton(GN)法、Levenberg-Marquardt(LM)算法等。

方法 介绍
最速下降法 负梯度方向,收敛速度慢
Newton 法 保留泰勒级数一阶和二阶项,二次收敛速度,但每步都计算Hessian矩阵,复杂
GN法 目标函数的Jacobian 矩阵近似H矩阵,提高算法效率,但H矩阵不满秩则无法迭代
LM法 信赖域算法,解决H矩阵不满秩或非正定,

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
通过对比的形式想必大家已经记住了这一堆优化的方法,很多情况下使用中都是优化方法的改进方法,因此掌握了这些方法,改进方法也不是太难了。
这里还想说明一点上面的最速下降法,很多人都在问的一个问题,为什么最速下降方向取的负梯度方向???为什么?这个可以看我们求导数的时候(梯度和导数的关系完美解析在我之前的博文中),
在这里插入图片描述
其实我们从图中不难看出,左侧,y随着x增加时,导数为正,因此导数的方向我们可以定义为指向x正方向,x与导数同向也就是x也逐渐增加时,函数是增大的。右侧,y随x增加而较小,导数为负,我们这里还定义导数的方向此时指向x负半轴,因此x沿负方向减小时,函数值是逐渐增大的,这里需要记住和注意,沿着导数方向,我们的函数值是逐渐增大的。
解释清了上面一点,我们就可以再升几维,在一维时我们的方向只能谈论左右,而上升到二维时,我们的方向就成了平面的360度了,此时就引出了梯度,下图是二维梯度
在这里插入图片描述
其实我们还是可以看出,梯度就是由导数组成的,完全可以说成是多维导数,而在一维导数存在的性质,上升了维度,我们的本质是不变的,因此我们只需要沿着每个维度的导数方向变化,我们的函数值就会增加。这里有个证明,沿梯度是增加最快的,我们可以引入方向导数,方向导数定义的在点P,沿某一方向的变化率。
求变化率我们就需要公平一点,各方向变化的尺寸是相同的,可以写一个圆,
半径为
ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho =\sqrt{
{
{\left( \Delta x \right)}^{2}}+{
{\left( \Delta y \right)}^{2}}}
ρ=(Δx)2+(Δy)2

变化为
f ( x + Δ x , y + Δ y ) − f ( x , y ) ρ \frac{f\left( x+\Delta x,y+\Delta y \right)-f\left( x,y \right)}{\rho } ρf(x+Δx,y+Δy)f(x,y)
变化率为(率这里需要加极限的概念,为什么?因为我们无法容忍一个我们没有明确定义数值的量 ρ \rho ρ
lim ⁡ ρ → 0   f ( x + Δ x , y + Δ y ) − f ( x , y ) ρ \underset{\rho \to 0}{\mathop{\lim }}\,\frac{f\left( x+\Delta x,y+\Delta y \right)-f\left( x,y \right)}{\rho } ρ0limρf(x+Δx,y+Δy)f(x,y)
其中
f ( x + Δ x , y + Δ y ) − f ( x , y ) = ∂ f ∂ x ⋅ Δ x + ∂ f ∂ y ⋅ Δ y + ∘ ( ρ ) f\left( x+\Delta x,y+\Delta y \right)-f\left( x,y \right)=\frac{\partial f}{\partial x}\centerdot \Delta x+\frac{\partial f}{\partial y}\centerdot \Delta y+\circ \left( \rho \right) f(x+Δx,y+Δy)f(x,y)=xfΔx+yfΔy+(ρ)
在这里插入图片描述
两边同时除以 ρ \rho ρ
f ( x + Δ x , y + Δ y ) − f ( x , y ) ρ = ∂ f ∂ x ⋅ Δ x ρ + ∂ f ∂ y ⋅ Δ y ρ + ∘ ( ρ ) ρ = ∂ f ∂ x ⋅ cos ⁡ θ + ∂ f ∂ y ⋅ sin ⁡ θ + ∘ ( ρ ) ρ \begin{aligned} & \frac{f\left( x+\Delta x,y+\Delta y \right)-f\left( x,y \right)}{\rho }=\frac{\partial f}{\partial x}\centerdot \frac{\Delta x}{\rho }+\frac{\partial f}{\partial y}\centerdot \frac{\Delta y}{\rho }+\frac{\circ \left( \rho \right)}{\rho } \\ & =\frac{\partial f}{\partial x}\centerdot \cos \theta +\frac{\partial f}{\partial y}\centerdot \sin \theta +\frac{\circ \left( \rho \right)}{\rho } \end{aligned} ρf(x+Δx,y+Δy)f(x,y)=xfρΔx+yfρΔy+ρ(ρ)=xfcosθ+yfsinθ+ρ(ρ)
lim ⁡ ρ → 0   f ( x + Δ x , y + Δ y ) − f ( x , y ) ρ = ∂ f ∂ x ⋅ cos ⁡ θ + ∂ f ∂ y ⋅ sin ⁡ θ \underset{\rho \to 0}{\mathop{\lim }}\,\frac{f\left( x+\Delta x,y+\Delta y \right)-f\left( x,y \right)}{\rho }=\frac{\partial f}{\partial x}\centerdot \cos \theta +\frac{\partial f}{\partial y}\centerdot \sin \theta ρ0limρf(x+Δx,y+Δy)f(x,y)=xfcosθ+yfsinθ
上式可以进一步改写为
lim ⁡ ρ → 0   f ( x + Δ x , y + Δ y ) − f ( x , y ) ρ = ∂ f ∂ x ⋅ cos ⁡ θ + ∂ f ∂ y ⋅ sin ⁡ θ = { ∂ f ∂ x , ∂ f ∂ y } ⋅ ( cos ⁡ θ , sin ⁡ θ ) = ∣ g r a d f ( x , y ) ∣ cos ⁡ ( g r a d f ( x , y ) , ( cos ⁡ θ , sin ⁡ θ ) ) \begin{aligned} & \underset{\rho \to 0}{\mathop{\lim }}\,\frac{f\left( x+\Delta x,y+\Delta y \right)-f\left( x,y \right)}{\rho }=\frac{\partial f}{\partial x}\centerdot \cos \theta +\frac{\partial f}{\partial y}\centerdot \sin \theta \\ & =\left\{ \frac{\partial f}{\partial x},\frac{\partial f}{\partial y} \right\}\centerdot \left( \cos \theta ,\sin \theta \right) \\ & =\left| gradf\left( x,y \right) \right|\cos \left( gradf\left( x,y \right),\left( \cos \theta ,\sin \theta \right) \right) \end{aligned} ρ0limρf(x+Δx,y+Δy)f(x,y)=xfcosθ+yfsinθ={
xf,yf}
(cosθ,sinθ)
=gradf(x,y)cos(gradf(x,y),(cosθ,sinθ))

可以看出要想cos值最大,gradf(x,y)和(cosθ,sinθ)需要同方向,而(cosθ,sinθ)就是我们下一步将要行进的方向。
到此便可以说,我们行进的方向和我们的梯度方向一致时,函数增长最快,方向相反时,函数下降最快。

有一个文献写的不错,推荐一下,不过说明,本文并没有进行参考

Wilamowski, B. M., & Yu, H. (2010). Improved computation for Levenberg–Marquardt training. IEEE transactions on neural networks, 21(6), 930-937.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/187060.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 聚类分析的常用算法_聚类算法的基本原理

    聚类分析的常用算法_聚类算法的基本原理原博文:聚类是一种机器学习技术,它涉及到数据点的分组。给定一组数据点,我们可以使用聚类算法将每个数据点划分为一个特定的组。理论上,同一组中的数据点应该具有相似的属性和/或特征,而不同组中的数据点应该具有高度不同的属性和/或特征。聚类是一种无监督学习的方法,是许多领域中常用的统计数据分析技术。在数据科学中,我们可以使用聚类分析从我们的数据中获得一些有价值的见解。在这篇文章中,我们将研究5种流…

    2022年8月29日
    4
  • vim命令搜索_linux打开vim编辑器

    vim命令搜索_linux打开vim编辑器尽管目前我们已经涉及Vim的多种特性,但此编辑器的特性集如此庞大,不管我们学习多少,似乎仍然远远不足。承接我们的Vim教程系列,本文我们将讨论Vim提供的多种搜索技术。不过在此之前,请注意文中涉及到的所有的例子、命令、指令均是在Ubuntu14.04,Vim7.4下测试的。Vim中的基础搜索操作当你在Vim中打开一个文件并且想要搜索一个特定的单词或模板,第一步你必须要先按…

    2022年9月24日
    5
  • aop 实现原理_简述aop的原理

    aop 实现原理_简述aop的原理概述:最近在开发中遇到了一个刚好可以用AOP实现的例子,就顺便研究了AOP的实现原理,把学习到的东西进行一个总结。文章中用到的编程语言为kotlin,需要的可以在IDEA中直接转为java。这篇文章将会按照如下目录展开:AOP简介 代码中实现举例 AOP实现原理 部分源码解析1.AOP简介相信大家或多或少的了解过AOP,都知道它是面向切面编程,在网上搜索可以找到很多的解释。…

    2026年1月19日
    3
  • HTML5快速设计网页[通俗易懂]

    HTML5快速设计网页目录一、认识web开发和软件安装二、使用HTML/HTML5搭建页面骨架一、认识web开发和软件安装1、认识网页:商城网页比较经典,比如京东,淘宝、小米商城还有锤子官网等有图片、文字还有一些多媒体组合而成的。我们还需要善于观察然后模仿成自己的2、网站:由多个网页组织在一起而成的,网页和网页之间是有联系的。就像蜘蛛网一样织成一张大网3、用户眼中…

    2022年4月11日
    51
  • ONVIF协议–ONVIF协议简介

    ONVIF协议–ONVIF协议简介简单介绍了 ONVIF 相关的 Profile 功能

    2026年2月2日
    2
  • go语言下载及安装「建议收藏」

    go语言下载及安装「建议收藏」go语言下载地址:https://studygolang.com/dl在cmd输入go如果显示这样,说明安装成功goenv-wGOPROXY=https://goproxy.cn,dire

    2022年8月1日
    13

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号