五、分类模型_大五模型包括

五、分类模型_大五模型包括一、分类模型的定义文章目录一、分类模型的定义二、分类模型类型2.1、逻辑回归2.2、决策树2.3、支持向量机2.4、朴素贝叶斯在机器学习中,我们把机器学习分为监督学习和非监督学习,监督学习就是在一组有标签(有目标)属性的数据集中,我们将数据教给机器学习,让他根据数据中的属性和目标,去看题目答案一样把答案记住。之后再给类似的题目去作一样。我们把数据集中的标签,一般都标为属性,而我们又把属性分为离散属性和连续属性,每一个标签都是可以这样分的。像如果我们预测的属性值的特性是连续属性的话,我们把这种模型称为是

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

一、分类模型的定义

在机器学习中,我们把机器学习分为监督学习和非监督学习,监督学习就是在一组有标签(有目标)属性的数据集中,我们将数据教给机器学习,让他根据数据中的属性和目标,去看题目答案一样把答案记住。之后再给类似的题目去作一样。

我们把数据集中的标签,一般都标为属性,而我们又把属性分为离散属性和连续属性,每一个标签都是可以这样分的。像如果我们预测的属性值的特性是连续属性的话,我们把这种模型称为是回归模型。

最为典型的就是: y = w ∗ x + b y=w*x+b y=wx+b 这样的一元回归(也就是一次函数,推广一下就是多元回归)

我们预测是连续的属性,我们可以称为是回归模型,那么如果我们预测的是离散属性呢,属性值只有1/0或者多个类别,我们把预测这种的模型就叫做分类模型

二、分类模型类型

在分类模型中,我们有:

  • 逻辑回归(名字带有回归可不一定是回归啊)
  • 决策树
  • 支持向量机(最为经典一种)
  • 朴素贝叶斯

在机器学习中,我们基本上都可以将都可以监督学习算法分为回归与分类的

2.1、逻辑回归

再说逻辑回归之前我们需要先了解sigmold函数:

f ( x ) = 1 / ( 1 + e y ) f(x)=1/(1+e^y) f(x)=1/(1+ey)

此函数和线性回归方程联合一起即可,得到逻辑回归方程

import numpy as np
import math
import matplotlib.pyplot as plt
%matplotlib inline
X=np.linspace(-5,5,200)
X=np.linspace(-5,5,200)
y=[1/(1+math.e**(-x)) for x in X]
plt.plot(X,y)
plt.show()

在这里插入图片描述

在这里我们先通过线性回归将数据分类,分类之后可以通过sigmold函数取离散化

在现实生活中逻辑回归模型一般是不够好的,所以我们很少用到逻辑回归,

2.2、决策树

对于分类树来说,给定一个观测值,因变量的预测值为它所属的终端结点内训练集的最常出现的类。分类树的构造过程与回归树也很类似,与回归树一样,分类树也是采用递归二叉分裂。但是在分类树中,均方误差无法作为确定分裂节点的准则,一个很自然的替代指标是分类错误率。分类错误率就是:此区域内的训练集中非常见类所占的类别,即:
上式中的代表第m个区域的训练集中第k类所占的比例。但是在大量的事实证明:分类错误率在构建决策树时不够敏感,一般在实际中用如下两个指标代替:
(1) 基尼系数

(2) 交叉熵:

# 使用决策树算法对iris分类:
''' criterion:{“gini”, “entropy”}, default=”gini” max_depth:树的最大深度。 min_samples_split:拆分内部节点所需的最少样本数 min_samples_leaf :在叶节点处需要的最小样本数。 '''
from sklearn.tree import DecisionTreeClassifier
from sklearn import datasets
tree_iris = DecisionTreeClassifier(min_samples_leaf=5)
import pandas as pd
 
iris = datasets.load_iris()
X = iris.data
y = iris.target
feature = iris.feature_names
data = pd.DataFrame(X,columns=feature)
data['target'] = y
data.head()
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
0 5.1 3.5 1.4 0.2 0
1 4.9 3.0 1.4 0.2 0
2 4.7 3.2 1.3 0.2 0
3 4.6 3.1 1.5 0.2 0
4 5.0 3.6 1.4 0.2 0
tree_iris.fit(X,y)
tree_iris.score(X,y)
0.9733333333333334

2.3、支持向量机

支持向量机SVM是20世纪90年代在计算机界发展起来的一种分类算法,在许多问题中都被证明有较好的效果,被认为是适应性最广的算法之一。

支持向量机是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)求解方法很多,可以参考李航的<<统计学习>>学习

from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
''' C:正则化参数。正则化的强度与C成反比。必须严格为正。惩罚是平方的l2惩罚。 kernel:{'linear','poly','rbf','sigmoid','precomputed'},默认='rbf' degree:多项式和的阶数 gamma:“ rbf”,“ poly”和“ Sigmoid”的内核系数。 shrinking:是否软间隔分类,默认true '''
svc_iris = make_pipeline(StandardScaler(), SVC(gamma='auto'))
svc_iris.fit(X, y)
svc_iris.score(X,y)
0.9733333333333334

2.4、朴素贝叶斯

贝叶斯方法是以贝叶斯原理为基础,使用概率统计的知识对样本数据集进行分类。由于其有着坚实的数学基础,贝叶斯分类算法的误判率是很低的。贝叶斯方法的特点是结合先验概率和后验概率,即避免了只使用先验概率的主观偏见,也避免了单独使用样本信息的过拟合现象。贝叶斯分类算法在数据集较大的情况下表现出较高的准确率,同时算法本身也比较简单

有的涉及公式推导和具体算法实现在这里就不在陈诉了,具体可以参考以下文章
优化理论之无约束优化基本结构及其python应用
最优化理论之负梯度方法与Newton型方法

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/188167.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • docker卸载命令_删除docker

    docker卸载命令_删除docker删除容器(jenkins官网提供的安装方式,删除比较特殊,因为jenkins自己创建了数据卷,所以要删除数据卷)不然,就算删除了容器,再运行镜像,以前的配置还是删不掉,运行的还是以前的配置首先,关停并删除jenkins容器dockerstop容器iddockerrm容器id然后,查看数据卷(如果是用挂载目录方式安装的jenkins的话,就不需要执行下面的步骤了)dockervolumels发现一个jenkins_home的数据卷,删除数据卷dockervolume

    2022年9月7日
    1
  • 小程序开发找不到appjson_appjson文件内容错误未找到

    小程序开发找不到appjson_appjson文件内容错误未找到编译报错-导入之前项目根目录下的project.config.json文件:{“description”:”AWePYproject”,”setting”:{“urlCheck”:true,”es6″:false,”postcss”:false,”minified”:false},”compileType”:”miniprogram”,”appid”:” wx4e367dd65dd063b6″,”pro.

    2022年10月12日
    0
  • 单元测试用例概述

    单元测试用例概述测试的覆盖种类       1.语句覆盖:语句覆盖就是设计若干个测试用例,运行被测试程序,使得每一条可执行语句至少执行一次。       2.判定覆盖(也叫分支覆盖):设计若干个测试用例,运行所测程序,使程序中每个判断的取真分支和取假分支至少执行一次。       3.条件覆盖:设计足够的测试用例,运行所测程序,使程序中每个判断的每个条件的每个可能取值至少执行一次。       4.判定—

    2022年6月29日
    31
  • vue环境安装与配置(Linux安装常用开发工具)

    vue安装环境搭建提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录vue安装环境搭建前言一、node.js安装和配置1.下载安装node.js2.配置默认安装目录和缓存日志目录3.node.js环境配置4.配置淘宝镜像源二、使用步骤1.引入库2.读入数据总结前言vue前端框架的环境搭建一、node.js安装和配置1.下载安装node.js官网下载最新版本:https://nodejs.org/en/download/可以下载安装包(安装教程见:http

    2022年4月18日
    67
  • 什么是javabean及其用法

    什么是javabean及其用法一、什么是JavaBean  JavaBean是一个遵循特定写法的Java类,它通常具有如下特点:这个Java类必须具有一个无参的构造函数 属性必须私有化。 私有化的属性必须通过public类型的方法暴露给其它程序,并且方法的命名也必须遵守一定的命名规范。javaBean范例:1packagegacl.javabean.study;23/**4…

    2022年7月17日
    10
  • 网络基础知识题_基础有哪些类型

    网络基础知识题_基础有哪些类型本文结合多年来的工作实践,来详细讲述一下作为IT从业人员要掌握的一些基础网络知识。

    2022年9月3日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号