maskrcnn训练步骤_神经网络如何预测

maskrcnn训练步骤_神经网络如何预测今天我们来说一下,如何使用自己训练出来的Mask_RCNN模型,或是官方自己的模型权重来进行预测:该Mask_RCNN版本基于:Python3,Keras,TensorFlow,我使用的具体版本为:Python3.6.3TensorFlow1.7Keras2.1.5tensorflow安装:https://blog.csdn.net/qq_15969343/article/details/7………

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

  ⚡插播一条老家自产的糖心苹果,多个品种,欢迎选购!有问题随时私信我⚡:

??来自雪域高原的馈赠——海拔2000米的大凉山高原生态糖心苹果??maskrcnn训练步骤_神经网络如何预测https://blog.csdn.net/qq_15969343/article/details/126107252

#2018/06/04 更新

使用官方的权重只检测特定的类别看这里:

Mask_RCNN:使用COCO权重进行特定类别预测(只标记出你需要的类别)maskrcnn训练步骤_神经网络如何预测https://blog.csdn.net/qq_15969343/article/details/80568579

#以下为原文:

今天我们来说一下,如何使用自己训练出来的Mask_RCNN模型,或是官方自己的模型权重来进行预测:

该Mask_RCNN版本基于:Python3,Keras,TensorFlow,我使用的具体版本为:

  • Python 3.6.3
  • TensorFlow 1.7
  • Keras 2.1.5

tensorflow安装:

win10下安装Tensorflow1.7+CUDA9.0+Cudnn7.0.3_Jayce~的博客-CSDN博客_tensorflow1.7安装maskrcnn训练步骤_神经网络如何预测https://blog.csdn.net/qq_15969343/article/details/79971469

Mask-RCNN :

GitHub – matterport/Mask_RCNN: Mask R-CNN for object detection and instance segmentation on Keras and TensorFlowmaskrcnn训练步骤_神经网络如何预测https://github.com/matterport/Mask_RCNN

1.加载模块以及载入模型权重:

import os
import sys
import random
import math
import numpy as np
import skimage.io
import matplotlib
import matplotlib.pyplot as plt

import coco
import utils
import model as modellib
import visualize
from config import Config

# Root directory of the project
ROOT_DIR = os.getcwd()

# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")

# Local path to trained weights file
MODEL_WEIGHT_PATH = os.path.join(ROOT_DIR, "mask_rcnn_val_all.h5")  #这里输入模型权重的路径
# Download COCO trained weights from Releases if needed
if not os.path.exists(MODEL_WEIGHT_PATH):
    utils.download_trained_weights(MODEL_WEIGHT_PATH)

# Directory of images to run detection on
IMAGE_DIR = os.path.join(ROOT_DIR, "samples\\balloon\\datasets\\balloon\\val2")   #这是输入你要预测图片的路径

2.根据自己训练时候的配置,从Config类中继承创建一个新类:

例如,我要检测的物体有5种:’person’, ‘book’, ‘chair’, ‘bottle’, ‘sports bag’再加上背景则一共是6种:

class somethingConfig(Config):
    """Configuration for training on MS COCO.
    Derives from the base Config class and overrides values specific
    to the COCO dataset.
    """
    # Give the configuration a recognizable name
    NAME = "something"

    # We use a GPU with 12GB memory, which can fit two images.
    # Adjust down if you use a smaller GPU.
    IMAGES_PER_GPU = 2

    # Uncomment to train on 8 GPUs (default is 1)
    # GPU_COUNT = 8

    # Number of classes (including background)
    NUM_CLASSES = 1 + 5  # COCO has 80 classes

3.根据上面的类,新建一个专门用于预测的类:

class InferenceConfig(somethingConfig):
    # Set batch size to 1 since we'll be running inference on
    # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
    GPU_COUNT = 1
    IMAGES_PER_GPU = 1

config = InferenceConfig()

4.载入图像,进行预测:

# Create model object in inference mode.
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)

# Load weights trained on MS-COCO
model.load_weights(MODEL_WEIGHT_PATH, by_name=True)

# COCO Class names
# Index of the class in the list is its ID. For example, to get ID of
# the teddy bear class, use: class_names.index('teddy bear')
class_names = ['BG', 'person', 'book', 'chair', 'bottle', 'sports bag']

# Load a random image from the images folder
file_names = next(os.walk(IMAGE_DIR))[2]
for x in range(len(file_names)):
    image = skimage.io.imread(os.path.join(IMAGE_DIR, file_names[x]))

# Run detection
    results = model.detect([image], verbose=1)

# Visualize results
    r = results[0]
    visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'],
                            class_names, r['scores'])

5.预测结果:

maskrcnn训练步骤_神经网络如何预测

都看到这里了,还不赶紧点赞评论收藏走一波? 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/188795.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 博客

    博客

    2021年8月20日
    54
  • uniapp,实现微信小程序登录,python登录接口的实现

    uniapp,实现微信小程序登录,python登录接口的实现

    2022年2月21日
    66
  • js判断map是否为空

    js判断map是否为空//激活前的提示varact_before_tip=function(data){//非空判断if(Object.keys(data).length===0)return;varact_before_tip=”以下订单对应的处方单id已开过票,请确认当前波次与已开订单相同。若不同,请重新导入。”+”<br>”;for(varkeyindata){ac.

    2022年6月29日
    207
  • 网页音乐播放器总结[通俗易懂]

    网页音乐播放器总结[通俗易懂]总结一下Vue实战的网页音乐播放器首先是设计出主体的整个框架分为四个部分最左边的歌曲列表,中间的唱片,最右边的热门评论显示以及下方的播放条然后开始准备进行功能的实现首先是需要导入Vue的依赖以及axios的js网络依赖库<!–开发环境版本,包含了有帮助的命令行警告–><scriptsrc=”https://cdn.jsdelivr.net/npm/vue/dist/vue.js”></script><!–官网提供的axio

    2022年6月17日
    33
  • Nginx-代理apache负载均衡

    Nginx-代理apache负载均衡一、什么是负载均衡        当一台服务器单位时间访问量越大时,服务器压力就越大,大到超过自身承受能力时,服务器就容会崩掉。为了避免服务器崩溃,让用户有更好的体验,我们通过负载均衡的方式来分担服务器压力。        我们可以建立多个服务器,组成一个服务器集群,当用户访问网站时,先访问中间服务器,再让这个中间服务器在服务器集群中选择一个压力

    2022年9月8日
    0
  • Weblogic性能优化(图解)

    Weblogic性能优化(图解)

    2022年3月3日
    36

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号