spgwr | R语言与地理加权回归(Ⅰ-1):线性地理加权回归[通俗易懂]

spgwr | R语言与地理加权回归(Ⅰ-1):线性地理加权回归[通俗易懂]地理加权回归(GeographicallyWeightedRegression,GWR)经过多年发展,已经具备了多种形式,在R语言中也对应着多个工具包,其中spgwr是一个开发较早、…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

地理加权回归(Geographically Weighted Regression, GWR)经过多年发展,已经具备了多种形式,在R语言中也对应着多个工具包,其中spgwr是一个开发较早、比较经典的工具包,功能也相对基础。

library(spgwr)

在该包中,运行线性地理加权回归的函数是gwr()。语法结构如下:

gwr(formula, data = list(), coords,
    bandwidth, gweight = gwr.Gauss, 
    adapt = NULL, hatmatrix = FALSE, fit.points,
    longlat = NULL, se.fit = FALSE, weights,
    cl = NULL, predictions = FALSE, 
    fittedGWRobject = NULL, se.fit.CCT = TRUE)

本篇先介绍它的几个主要的参数:

参数 含义及格式
formula 模型表达式;
data 数据源;可以为普通的数据框,也可以为sp格式的矢量对象
coords 坐标信息,当data参数是普通数据框时,需要提供该参数
bandwidth 带宽
gweight 距离加权函数

该包目前的版本号是0.6-34,还不支持sf格式的矢量对象。

数据源

library(rgdal)
NY8 <- readOGR(system.file("shapes/NY8_utm18.shp",
                           package = "spData"))

模型形式

form <- Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME

带宽

带宽(bandwidth)确定了局部的范围,该包的gwr.sel()函数提供了两种确定带宽的方法:交叉验证法和AIC信息准则法。语法结构如下:

gwr.sel(formula, data = list(),
        coords, adapt = FALSE, gweight = gwr.Gauss,
        method = "cv", verbose = TRUE,
        longlat = NULL, RMSE = FALSE, weights,
        tol = .Machine$double.eps^0.25,
        show.error.messages = FALSE)
  • method:可选项有cv(交叉验证)、aic(AIC准则)。

bw <- gwr.sel(formula = form, data = NY8,
              gweight = gwr.Gauss, method = "cv")
bw
## [1] 179942.6

formuladatagweight参数需要与gwr()函数的对应参数保持一致。

距离加权函数

距离加权函数是一个随距离增加而逐渐衰减的函数,该包提供了4种地理加权函数:gwr.gaussgwr.Gauss(默认)、gwr.bisquaregwr.tricube

b表示带宽,d表示距离。以d = 100为例:

spgwr | R语言与地理加权回归(Ⅰ-1):线性地理加权回归[通俗易懂]

完整形式

线性回归:

model.lm <- lm(formula = form, data = NY8@data)
summary(model.lm)
## 
## Call:
## lm(formula = form, data = NY8@data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7417 -0.3957 -0.0326  0.3353  4.1398 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.51728    0.15856  -3.262  0.00124 ** 
## PEXPOSURE    0.04884    0.03506   1.393  0.16480    
## PCTAGE65P    3.95089    0.60550   6.525 3.22e-10 ***
## PCTOWNHOME  -0.56004    0.17031  -3.288  0.00114 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6571 on 277 degrees of freedom
## Multiple R-squared:  0.1932, Adjusted R-squared:  0.1844 
## F-statistic:  22.1 on 3 and 277 DF,  p-value: 7.306e-13

线性地理加权回归:

library(rgdal)
NY8 <- readOGR(system.file("shapes/NY8_utm18.shp",
                           package = "spData"))
form <- Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME
bw <- gwr.sel(formula = form, data = NY8,
              gweight = gwr.Gauss, method = "cv")

model <- gwr(formula = form, data = NY8,
             bandwidth = bw, gweight = gwr.Gauss)
model
## Call:
## gwr(formula = form, data = NY8, bandwidth = bw, gweight = gwr.Gauss)
## Kernel function: gwr.Gauss 
## Fixed bandwidth: 179942.6 
## Summary of GWR coefficient estimates at data points:
##                   Min.   1st Qu.    Median   3rd Qu.      Max.  Global
## X.Intercept. -0.522172 -0.520740 -0.520154 -0.514439 -0.511092 -0.5173
## PEXPOSURE     0.047176  0.048032  0.049527  0.049722  0.050477  0.0488
## PCTAGE65P     3.911526  3.933832  3.959192  3.962334  3.979552  3.9509
## PCTOWNHOME   -0.559358 -0.557968 -0.557682 -0.555498 -0.554563 -0.5600

模型结果的数据结构是list,模型的主要结果在下图红框所示的位置:

spgwr | R语言与地理加权回归(Ⅰ-1):线性地理加权回归[通俗易懂]

以截距为例进行可视化:

library(sf)
NY8_sf <- st_as_sf(NY8)
NY8_sf$Intercept <- model$SDF@data$X.Intercept.

plot(NY8_sf["Intercept"])

spgwr | R语言与地理加权回归(Ⅰ-1):线性地理加权回归[通俗易懂]

参考文献:
https://mirrors.tuna.tsinghua.edu.cn/CRAN/web/packages/spgwr/spgwr.pdf

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/188806.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 忍不住为这样的智慧课堂打call!

    忍不住为这样的智慧课堂打call!

    2022年3月8日
    46
  • session、cookie、token 详解

    发展史1、很久很久以前,Web基本上就是文档的浏览而已,既然是浏览,作为服务器,不需要记录谁在某一段时间里都浏览了什么文档,每次请求都是一个新的HTTP协议,就是请求加响应,尤其是我不用记住是谁刚刚发了HTTP请求,每个请求对我来说都是全新的。这段时间很嗨皮2、但是随着交互式Web应用的兴起,像在线购物网站,需要登录的网站等等,马上就面临一个问题,那就是要管理会话,…

    2022年4月6日
    53
  • idhttp的socket error # 10054 错误的处理办法

    idhttp的socket error # 10054 错误的处理办法在通过http实现restful数据通讯时,死活出现:socketerror#10054导致这种情况的原因很复杂。同样的程序,在不同的环境中出现不同结果。通过观察,发现登录后获取toke

    2022年7月3日
    23
  • 软件测试流程五个阶段

    软件测试流程五个阶段软件测试按照研发阶段一般分为5个部分:单元测试、集成测试、确认测试、系统测试、验收测试,下面将不同阶段需要的一些工作内容做一下梳理希望可以帮助到大家。 //No.1//单元测试 单元测试又称为模块测试,是针对软件设计的最小单位程序模块进行正确性检查的测试工作,单元测试需要从程序内部结构出发设计测试用例,多个模块可以平行地独立进行单元测试。一、单元测试的内容: 1、模…

    2022年6月7日
    62
  • myPagination5.0 分页简单实例「建议收藏」

    myPagination5.0 分页简单实例

    2022年1月31日
    31
  • pycharm 最新激活码(JetBrains全家桶)[通俗易懂]

    (pycharm 最新激活码)2021最新分享一个能用的的激活码出来,希望能帮到需要激活的朋友。目前这个是能用的,但是用的人多了之后也会失效,会不定时更新的,大家持续关注此网站~IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.html…

    2022年3月30日
    126

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号