Gamma校正原理及python实现

Gamma校正原理及python实现Gamma校正原理:  假设图像中有一个像素,值是200,那么对这个像素进行校正必须执行如下步骤:  1.归一化:将像素值转换为0~1之间的实数。算法如下:(i+0.5)/256这里包含1个除法和1个加法操作。对于像素A而言,其对应的归一化值为0.783203。  2.预补偿:根据公式,求出像素归一化后的数…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

Gamma校正原理:
  假设图像中有一个像素,值是 200 ,那么对这个像素进行校正必须执行如下步骤: 
  1. 归一化 :将像素值转换为  0 ~ 1  之间的实数。 算法如下 : ( i + 0. 5)/256  这里包含 1 个除法和 1 个加法操作。对于像素  A  而言  , 其对应的归一化值为  0. 783203 。 

  2. 预补偿 :根据公式  , 求出像素归一化后的 数据以  1 /Gamma为指数的对应值。这一步包含一个 求指数运算。若  Gamma值为  2. 2 ,  则  1 /Gamma为  0. 454545 , 对归一化后的  A  值进行预补偿的结果就 是  0. 783203 ^0. 454545 = 0. 894872 。 (当Gamma校正的值大于1时,图像的高光部分被压缩而暗调部分被扩展;当Gamma校正的值小于1时,图像的高光部分被扩展而暗调部分被压缩

  3. 反归一化 :将经过预补偿的实数值反变换为  0  ~  255  之间的整数值。具体算法为 : f*256 – 0. 5  此步骤包含一个乘法和一个减法运算。续前 例  , 将  A  的预补偿结果  0. 894872  代入上式  , 得到  A  预补偿后对应的像素值为  228 , 这个  228  就是最后送 入显示器的数据。

  
  如上所述如果直接按公式编程的话,假设图像的分辨率为 800*600 ,对它进行 Gamma校正,需要执行 48 万个浮点数乘法、除法和指数运算。效率太低,根本达不到实时的效果。 
  针对上述情况,提出了一种快速算法,如果能够确知图像的像素取值范围  , 例如  , 0 ~ 255 之间的整数  , 则图像中任何一个像素值只能 是  0  到  255  这  256  个整数中的某一个 ; 在  gamma 值 已知的情况下  ,0 ~ 255  之间的任一整数  , 经过“归一 化、预补偿、反归一化”操作后 , 所对应的结果是唯一的  , 并且也落在  0 ~ 255  这个范围内。
  如前例  , 已知  Gamma值为  2. 2 , 像素  A  的原始值是  200 , 就可求得 经  Gamma校正后  A  对应的预补偿值为  228 。基于上述原理  , 我们只需为  0 ~ 255  之间的每个整数执行一次预补偿操作  , 将其对应的预补偿值存入一个预先建立的  gamma  校正查找表 (LUT:Look Up Table) , 就可以使用该表对任何像素值在  0 ~ 255  之 间的图像进行  gamma  校正。
原文:https://blog.csdn.net/linqianbi/article/details/78617615 

def adjust_gamma(image, gamma=1.0):
    invGamma = 1.0/gamma
    table = []
    for i in range(256):
        table.append(((i / 255.0) ** invGamma) * 255)
    table = np.array(table).astype("uint8")
    return cv2.LUT(img_dark, table)

img_brighter = adjust_gamma(img_dark, 2)

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/190767.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号