【python量化】用python搭建一个股票舆情分析系统

【python量化】用python搭建一个股票舆情分析系统写在前面下面的这篇文章将手把手教大家搭建一个简单的股票舆情分析系统,其中将先通过金融界网站爬取指定股票在一段时间的新闻,然后通过百度情感分析接口,用于评估指定股票的正面和反面新闻的占比,以…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

【python量化】用python搭建一个股票舆情分析系统

写在前面

下面的这篇文章将手把手教大家搭建一个简单的股票舆情分析系统,其中将先通过金融界网站爬取指定股票在一段时间的新闻,然后通过百度情感分析接口,用于评估指定股票的正面和反面新闻的占比,以此确定该股票是处于利好还是利空的状态。

1

环境准备

本地环境:

Python 3.7
IDE:Pycharm

库版本:

re 2.2.1
lxml 4.6.3
requests 2.24.0
aip 4.15.5
matplotlib 3.2.1

其中用到了百度的ai接口,通过pip安装的方式如下:

pip install baidu-aip

然后,导入需要用到的所有库:

import requests
import matplotlib.pyplot as plt
import pandas as pd
from lxml import etree
from aip import AipNlp

2

代码实现

1、获取新闻数据

首先,我们需要通过金融界(http://stock.jrj.com.cn/share)的网站爬取股票的新闻信息。获取指定股票的新闻资讯的接口形式是:

http://stock.jrj.com.cn/share,股票代码,ggxw.shtml
如:http://stock.jrj.com.cn/share,600381,ggxw.shtml

如600381股票的新闻资讯如下图所示:

【python量化】用python搭建一个股票舆情分析系统

需要注意的是,当获取后面几页的新闻时,其接口需要加一个后缀,形式如下:

http://stock.jrj.com.cn/share,600381,ggxw_page.shtml
如获取第二页,http://stock.jrj.com.cn/share,600381,ggxw_2.shtml

首先,我们定义一个函数,传入一个股票代码的列表,表示用于下载到本地的股票新闻的代码。然后将每个股票的代码拼接到api中,然后调用parse_pages()函数用于爬取该api下网页中的数据。

# 下载指定的股票的新闻数据
def download_news(codes):
    for code in codes:
        print(code)
        url = "http://stock.jrj.com.cn/share," + str(code) + ",ggxw.shtml"
        parse_pages(url, code)

接下来,我们实现上面的parse_pages()函数。其中需要先获取每一页新闻数据的总的页数,然后针对每一页拼接对应的api接口,最后再对每一页的新闻数据进行下载。

# 解析每个页面的数据
def parse_pages(url, code):
    max_page = get_max_page(url)
    for i in range(1, max_page + 1):
        if i != 1:
            url = "http://stock.jrj.com.cn/share," + str(code) + ",ggxw_" + str(i) + ".shtml"
        download_page(url, code)

获取最大页数的函数如下,其中用到了lxml下的etree模块来解析html代码,然后通过正则表达式获取最大页数。

# 获取url下的最大page数
def get_max_page(url):
    page_data = requests.get(url).content.decode("gbk")
    data_tree = etree.HTML(page_data)
    if page_data.find("page_newslib"):
        max_page = data_tree.xpath("//*[@class=\"page_newslib\"]//a[last()-1]/text()")
        return int(max_page[0])
    else:
        return 1

接下来实现download_page()函数,它的作用通过正则表达式匹配页面中的新闻标题,并将获取的标题数据保存到本地文件中。

# 解析指定页面的数据并保存至本地
def download_page(url, code):
    try:
        page_data = requests.get(url).content.decode("gbk")
        data_tree = etree.HTML(page_data)
        titles = data_tree.xpath("//*[@class = \"newlist\"]//li/span/a/text()")
        for title in titles:
            title = title + "\r\n"
            with open(str(code) + ".txt", "a") as file:
                file.write(title)
                file.flush()
        return
    except:
        print("服务器超时")

接下来,通过调用上面的download_news()函数,并传入需要爬取新闻的股票代码列表,就可以将新闻数据爬取到本地了。

codes = [600381, 600284, 600570, 600519, 600258, 601179]
download_news(codes)

得到的新闻数据形式如下图所示:

【python量化】用python搭建一个股票舆情分析系统

2、新闻情绪分析以及统计

在获取了股票的新闻数据之后,我们接下来需要对每支股票的所有新闻进行情感分析了。其中用到了百度人工智能接口aip下的aipNLP用于对所有新闻数据进行自然语言处理,并进行情感分析。需要注意的是,在通过百度人工智能接口进行情感分析之前需要先注册并获取APP_ID、API_KEY以及SECRET_KEY。获取的方式如下:

首先,登录并注册百度人工智能平台(https://ai.baidu.com/):

【python量化】用python搭建一个股票舆情分析系统

然后,在自己的控制台中找到自然语言处理,并创建应用,如下图所示:

【python量化】用python搭建一个股票舆情分析系统

创建完成之后就可以得到自己的APP_ID、API_KEY以及SECRET_KEY,如下图所示:

【python量化】用python搭建一个股票舆情分析系统

接下来通过一个函数来实现对指定的股票进行情感分析并保存到本地:

# 对指定的股票进行情感分析并保存到本地
def analyze_stocks(codes):
    df = pd.DataFrame()
    for code in codes:
        print(code)
        stock_dict = analyze(code)
        df = df.append(stock_dict, ignore_index=True)
    df.to_csv('./stocks.csv')

其中的analyze()函数实现如下,其中需要将前面申请的APP_ID、API_KEY以及SECRET_KEY进行定义。之后读取包含每个股票的所有新闻的文件,其中每一行表示一个新闻标题。然后通过aipNLP对每个标题进行情感分析,进而基于得到的分析结果来统计积极新闻和消极新闻的个数,最后将针对每支股票的分析结果返回:

# 对指定股票的所有新闻数据进行情感分析并进行统计
def analyze(code):
    APP_ID = 'your app id'
    API_KEY = 'your api key'
    SECRET_KEY = 'your secret key'
    positive_nums = 0
    nagative_nums = 0
    count = 0
    aipNlp = AipNlp(APP_ID, API_KEY, SECRET_KEY)
    lines = open(str(code) + '.txt').readlines()
    for line in lines:
        if not line.isspace():
            line = line.strip()
            try:
                result = aipNlp.sentimentClassify(line)
                positive_prob = result['items'][0]['positive_prob']
                nagative_prob = result['items'][0]['negative_prob']
                count += 1
                if positive_prob >= nagative_prob:
                    positive_nums += 1
                else:
                    nagative_nums += 1
            except:
                pass
    avg_positive = positive_nums / count
    avg_nagative = nagative_nums / count
    print('股票代码:',code, '消极比例:', avg_nagative, '积极比例:',avg_positive)
    return {'股票代码':code, '消极比例':avg_nagative, '积极比例':avg_positive}

调用下面的代码进行分析,并生成统计结果:

codes = [600381, 600284, 600570, 600519, 600258, 601179]
analyze_stocks(codes)

3、数据可视化

最后我们将得到的结果进行可视化,可以直观地看到每支股票的消极新闻和积极新闻所占的比例。

def show():
    matplotlib.rcParams['font.sans-serif'] = ['SimHei']
    matplotlib.rcParams['axes.unicode_minus'] = False
    df = pd.read_csv('./stocks.csv', index_col='股票代码', usecols=['股票代码', '消极比例','积极比例'])
    df.plot(kind='barh', figsize=(10, 8))
    plt.show()

效果图如下所示:

【python量化】用python搭建一个股票舆情分析系统

3

总结

在这篇文章中,我们介绍了如何基于python搭建一个简单的股票舆情分析系统,其中将先通过金融界网站爬取指定股票在一段时间的新闻,然后通过百度情感分析接口对新闻进行情感分析,最后统计股票的正面和反面新闻的占比,以此确定该股票是处于利好还是利空的状态。基于此系统,大家可以进行进一步的进行扩展以应用。

完整代码请在《人工智能量化实验室》公众号后台回复“080”关键字。本文内容仅仅是技术探讨和学习,并不构成任何投资建议。

【python量化】用python搭建一个股票舆情分析系统

【python量化】用python搭建一个股票舆情分析系统

了解更多人工智能与
量化金融知识

<-请扫码关注

让我知道你在看

【python量化】用python搭建一个股票舆情分析系统

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/191304.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 为5000听障儿童发声,3小时公益平台助力“爱的分贝”更加响亮

    为5000听障儿童发声,3小时公益平台助力“爱的分贝”更加响亮

    2021年6月10日
    116
  • ipv4和ipv6对比(IPV4)

    TCP/IP的心脏是互联网层,这一层主要由IP和ICMP两个协议组成。IP相当于OSI参考模型中的第三层——网络层。而网络层的作用是实现终端节点之间的通信。这种终端节点之间的通信也叫‘点到点’通信。IP地址用于连接在网络中的所有主机中识别出进行通信的目标地址。谷在tcp/ip通信的所有主机中必须设置IP地址。路由控制、多条路由和路由控制表使得数据包可以成功抵达要去的地方。路由控制表记录着此…

    2022年4月15日
    186
  • AV1 码流分析器的搭建

    AV1 码流分析器的搭建作为HEVC比较热门的继承者,AOM推进的AV1在2018年进入了大家的视野。研究AV1的新编码工具离不开一个强大的码流分析工具。AOM得益于开源社区的贡献,其码流分析工具也在同步的推出,给研究AV1新编码工具的小伙伴带来省去不少麻烦。本文主要简单介绍一下如何搭建一个本地的AV1码流分析工具以及在大家过程中遇到的问题。1.AV1码流分析工具简单介绍AV1码流分析工…

    2022年9月22日
    0
  • C# winform DataGridView 常见属性

    C# winform DataGridView 常见属性C#winformDataGridView属性说明① 取得或者修改当前单元格的内容② 设定单元格只读③ 不显示最下面的新行④ 判断新增行⑤ 行的用户删除操作的自定义⑥ 行、列的隐藏和删

    2022年7月1日
    23
  • 搭建jenkins实现自动化部署微服务_自动化部署平台搭建

    搭建jenkins实现自动化部署微服务_自动化部署平台搭建一、安装jenkins1、添加yumrepos,然后安装注:如果上边的执行成功就不用再执行这两行了注:如果网络不好需要重试几次2、如果未安装java还需安装java3、启动和停止如果启动

    2022年8月1日
    0
  • pandas用平均值填充缺失值_pandas筛选列不为空值

    pandas用平均值填充缺失值_pandas筛选列不为空值官方fillna方法文档pandas中fillna()方法,能够使用指定的方法填充NA/NaN值。1.函数详解函数形式:fillna(value=None,method=None,axis=None,inplace=False,limit=None,downcast=None,**kwargs)参数:value:用于填充的空值的值。method:{‘backfill…

    2022年8月12日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号