数学建模中的选址问题_数学建模停车场规划问题

数学建模中的选址问题_数学建模停车场规划问题选址问题:是指在规划区域里选择一个或多个设施的位置,使得目标最优。四个要素:设施、规划区域、位置(距离)、目标设施:按照设施的空间维度划分,可以将选址问题分为:1.立体选址问题:设施的高度不能被忽略,如集装箱装箱问题。2.平面选址问题:设施的长、宽不能被忽略,如货运站的仓位布局问题。3.线选址问题:设施的宽度不能被忽略,如在仓库两边的传送带布局问题。4.点选址问题:设施可以…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

选址问题

是指在规划区域里选择一个或多个设施的位置,使得目标最优。

四个要素

设施、规划区域、位置(距离)、目标

设施

按照 设施的 空间维度 划分,可以将选址问题分为:
1.立体选址问题:设施的高度不能被忽略,如集装箱装箱问题。
2.平面选址问题:设施的长、宽不能被忽略,如货运站的仓位布局问题。
3.线选址问题:设施的宽度不能被忽略,如在仓库两边的传送带布局问题。
4.点选址问题:设施可以被简化为一个点,绝大多数时候我们遇到的都是这类问题。

按照设施的 规划数量 划分,可以将选址问题分为:
1.单设施选址
2.多设施选址

规划区域

按照规划区域的结构划分,可以将选址问题分为:
1.连续选址问题:设施可以在给定范围的任意位置选址,设施的候选位置为无穷多。
2.离散选址问题:设施的候选位置是有限且较少的,实际中最常遇到这类问题。
3.网格选址问题:规划区域被划分为许多的小单元,每个设施占据其中有限个单元。

位置(距离)

按照设施与需求点位置的关系,可以将所要获取的距离分为:
1.间接距离:
有向赋权图:Dijkstra算法和Floyed算法
两种算法的代码链接
2.直接距离:
(1)两点间距离公式
(2)Lp距离计算方式如下:d = (Σ(x1i-x2i)p)1/p

p=1时:L1范式,又称曼哈顿距离,在二维平面上 d=|x1-x2|+|y1-y2|。假设在曼哈顿街区乘坐出租车从 P 点到 Q 点,白色表示高楼大厦,灰色表示街道,则下图中红线、蓝线、黄线的行驶距离都是一样的,都是曼哈顿距离。
在这里插入图片描述
p=2:L2范式,又称欧氏距离,定义于欧几里得空间中,是最常见的距离度量方式,在二维平面上 d=((x1-x2)2+(y1-y2)2)1/2,即两点间的直线距离,上图中的绿线。

p=∞:切比雪夫距离(Chebyshev distance),在二维平面上 d=max(|x1-x2|, |y1-y2|)。玩过国际象棋的都知道,国王走一步能够移动到相邻的8个方格中的任意一个位置,那么国王从格子(x1,y1)走到格子(x2,y2)最少的步数就是切比雪夫距离。可以试试看,下图已经标注国王到达任意位置所需要的步数。
在这里插入图片描述

目标:

1.单目标选址问题
2.多目标选址问题:实际的问题往往都是多目标规划问题,比如既想距离尽可能短,又想要费用尽可能少

三大问题:

1.P中值问题 P-Median Problem

研究:在备选设施集合里,如何选择p个设施,使所有需求点得到服务,并且需求点到其最近设施的加权距离总和最小。

这是一个MinSum问题,可由以下整数规划模型表示:

在这里插入图片描述
应用场景:在物流领域应用得非常广泛,加权距离代表了运输成本,目标是总成本最少。

2.P中心问题 P-Center Problem

研究:在备选设施集合里,如何选择p个设施,使所有需求点得到服务,并且每个需求点到其最近设施的最大距离最小。

这是一个MinMax问题,可由以下整数规划模型表示(符号说明与上面类似):
在这里插入图片描述
应用场景:应急设施的选址,比如警局、消防局、医院,要求尽可能快地到达任意位置。

3.覆盖问题 Covering Problem

覆盖问题分为最大覆盖问题和集覆盖问题两类。

(1)集覆盖问题

研究:在备选设施集合里,已知每个设施的服务范围,如何选择设施,使所有需求点得到服务,并且设施数p最小或成本最小。
在这里插入图片描述

(2)最大覆盖问题

研究:在备选设施集合里,已知每个设施的服务范围,如何选择p个设施,使得服务的需求点数最多或需求量最大。
应用场景:追求覆盖面的场景,比如移动基站的选址、物流中心的选址。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/193327.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • vscode 配置C语言编译环境(完美版)_C语言环境安装

    vscode 配置C语言编译环境(完美版)_C语言环境安装基本步骤要在VSCode中配置C语言环境,我们首先可能要一个VSCode(废话),所以先下载安装一个VSCode;然后肯定需要相关插件,因为VSCode不能直接拿来写C;然后任何语言的程序在运行前都需要编译,那还需要一个编译器,很可惜VSCode插件里面不自带,所以要自己下载然后配置;最后在VSCode中进行相关配置,就可以下载并安装VSCodevscode下载地址安装相关插件打卡后进入如下界面,选择这个C/C++的,然后点击install进行安装,大概几秒钟就好了,安装完成后in

    2022年9月16日
    2
  • SD/MMC 卡读写模块—SD/MMC 卡的外部物理接口

    SD/MMC 卡读写模块—SD/MMC 卡的外部物理接口转载地址:http://www.8951.com/book/jiao1n21.htmSD/MMC   卡是一种大容量(最大可达4GB)、性价比高、体积小、访问接口简单的存储卡。SD/MMC卡大量应用于数码相机、MP3机、手机、大容量存储设备,作为这些便携式设备的存储载体,它还具有低功耗、非易失性、保存数据无需消耗能量等特点。SD卡接口向下兼容MMC(MutliMediaCard

    2022年6月8日
    48
  • Android启动模式之singleTask解析「建议收藏」

    Android启动模式之singleTask解析「建议收藏」在android应用程序中,最重要的组件之一Activity有4中启动模式,其中singleTask更加官方文档的描述很容易让人迷惑,其实原因在于,activity的启动方式除了受标签android:launchMode的影响之外,还会被启动参数所左右比如,intent的标志位FLAG_ACTIVITY_NEW_TASK,任务标签 android:taskAffinity。本文将对singleTa

    2022年6月26日
    159
  • 什么是JavaBean、bean? 什么是POJO、PO、DTO、VO、BO ? 什么是EJB、EntityBean?

    什么是JavaBean、bean? 什么是POJO、PO、DTO、VO、BO ? 什么是EJB、EntityBean?前言:在Java开发中经常遇到这些概念问题,有的可能理解混淆,有的可能理解不到位,特此花了很多时间理顺了这些概念。不过有些概念实际开发中并没有使用到,可能理解还不够准确,只能靠后续不断纠正了。1、什么是POJO?POJO(PlainOldJavaObject)这种叫法是MartinFowler、RebeccaParsons和JoshMacKenzie在2000年的一…

    2022年5月28日
    67
  • java是值传递还是引用传递 知乎_按值调用和按引用调用

    java是值传递还是引用传递 知乎_按值调用和按引用调用最近整理面试题,整理到值传递、引用传递,到网上搜了一圈,争议很大。带着一脸蒙圈,线上线下查了好多资料。最终有所收获,所以分享给大家,希望能对你有所帮助。首先说下我的感受,这个题目出的很好,但是在Java中这个题目是有问题的(在下面我会解释)。并且,有很多结论是Java中只有值传递。我认为这样说不够严谨。当然如果针对Java语言本身来讲,Java中只有值传递,没有…

    2025年8月14日
    4
  • 在线校验哈希算法_哈希值查询

    在线校验哈希算法_哈希值查询地址http://www.atool9.com/hash.php

    2025年11月5日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号