基于遗传算法的函数极值求取_遗传算法计算二元函数最大值

基于遗传算法的函数极值求取_遗传算法计算二元函数最大值前面在《遗传算法通识》中介绍了基本原理,这里结合实例,看看遗传算法是怎样解决实际问题的。有一个函数:f(x)=x+10sin5x+7cos4xf(x)=x+10\sin5x+7\cos4x求其在区间[-10,10]之间的最大值。下面是该函数的图像:在本例中,我们可以把x作为个体的染色体,函数值f(x)作为其适应度值,适应度越大,个体越优秀,最大的适应度就是我们要求的最大值。

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

前面在《遗传算法通识》中介绍了基本原理,这里结合实例,看看遗传算法是怎样解决实际问题的。

有一个函数:

f(x)=x+10sin5x+7cos4x

求其在区间[-10,10]之间的最大值。下面是该函数的图像:
这里写图片描述

在本例中,我们可以把x作为个体的染色体,函数值f(x)作为其适应度值,适应度越大,个体越优秀,最大的适应度就是我们要求的最大值。
直接看代码吧(直接看注释就能看懂)。

# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt

# 适应度函数
def fitness(x):
    return x + 10 * np.sin(5 * x) + 7 * np.cos(4 * x)

# 个体类
class indivdual:
    def __init__(self):
        self.x = 0  # 染色体编码
        self.fitness = 0  # 适应度值

    def __eq__(self, other):
        self.x = other.x
        self.fitness = other.fitness


# 初始化种群
def initPopulation(pop, N):
    for i in range(N):
        ind = indivdual()
        ind.x = np.random.uniform(-10, 10)
        ind.fitness = fitness(ind.x)
        pop.append(ind)

# 选择过程
def selection(N):
    # 种群中随机选择2个个体进行变异(这里没有用轮盘赌,直接用的随机选择)
    return np.random.choice(N, 2)

# 结合/交叉过程
def crossover(parent1, parent2):
    child1, child2 = indivdual(), indivdual()
    child1.x = 0.9 * parent1.x + 0.1 * parent2.x
    child2.x = 0.1 * parent1.x + 0.9 * parent2.x
    child1.fitness = fitness(child1.x)
    child2.fitness = fitness(child2.x)
    return child1, child2


# 变异过程
def mutation(pop):
    # 种群中随机选择一个进行变异
    ind = np.random.choice(pop)
    # 用随机赋值的方式进行变异
    ind.x = np.random.uniform(-10, 10)
    ind.fitness = fitness(ind.x)

# 最终执行
def implement():
    # 种群中个体数量
    N = 20
    # 种群
    POP = []
    # 迭代次数
    iter_N = 500
    # 初始化种群
    initPopulation(POP, N)

# 进化过程
    for it in range(iter_N):
        a, b = selection(N)
        if np.random.random() < 0.75:  # 以0.75的概率进行交叉结合
            child1, child2 = crossover(POP[a], POP[b])
            new = sorted([POP[a], POP[b], child1, child2], key=lambda ind: ind.fitness, reverse=True)
            POP[a], POP[b] = new[0], new[1]

        if np.random.random() < 0.1:  # 以0.1的概率进行变异
            mutation(POP)

        POP.sort(key=lambda ind: ind.fitness, reverse=True)

    return POP


pop = implement()

某一次执行中生成的种群结果:
x= 7.856668536350623 f(x)= 24.8553618344
x= 7.856617137410436 f(x)= 24.8553599496
x= 7.855882244973719 f(x)= 24.855228419
x= 7.858162713580771 f(x)= 24.8549986778
x= 7.854666292636083 f(x)= 24.8545814476
x= 7.8546151621339035 f(x)= 24.8545425164
x= 7.854257103484315 f(x)= 24.8542433686
x= 7.8540369711896485 f(x)= 24.8540364169
x= 7.859755006757047 f(x)= 24.8537223172
x= 7.853295380711855 f(x)= 24.85321014
x= 7.853150338317231 f(x)= 24.853025258
x= 7.865253897257472 f(x)= 24.8422607373
x= 7.865398960184752 f(x)= 24.8418103374
x= 7.83788118828644 f(x)= 24.7909840929
x= 1.6190862308608494 f(x)= 18.1988285173
x= 1.6338610617810327 f(x)= 17.9192791105
x= 2.9228585632615074 f(x)= 16.2933631636
x= 2.95557040313432 f(x)= 16.1223714647
x= -1.2700947285555912 f(x)= 0.575714213108
x= -9.208677771536376 f(x)= -13.4869432732

得到的最优解结果为:
x= 7.856668536350623 f(x)= 24.8553618344
从图像上看符合要求。其结果图像如下,红色点表示种群中个体的位置。

# 绘图代码
def func(x):
    return x + 10 * np.sin(5 * x) + 7 * np.cos(4 * x)
x = np.linspace(-10, 10, 10000)
y = func(x)
scatter_x = np.array([ind.x for ind in pop])
scatter_y = np.array([ind.fitness for ind in pop])
plt.plot(x, y)
plt.scatter(scatter_x, scatter_y, c='r')
plt.show()

这里写图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/194361.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 用递归实现斐波那契数列 python_python斐波那契数列前30项

    用递归实现斐波那契数列 python_python斐波那契数列前30项文章目录一,递归方法: 二,斐波那契数列简介: 特性一: 特性二: 两种方法运行时间对比: /一,递归方法:/递归方法为:将问题一步步分解,直到得到可以解决的简单问题。通常涉及直接或间接条用自身:例如计算列表(1,3,5,7,9,13)中各元素的和。直接或间接调用sum()函数自身:python实现如下:In[1]deflistsum(a):iflen(a)==1:r…

    2022年9月3日
    3
  • 爬虫框架Scrapy安装

    爬虫框架Scrapy安装免责声明:本文所记录的技术手段及实现过程,仅作为爬虫技术学习使用,不对任何人完全或部分地依据本文的全部或部分内容从事的任何事情和因其任何作为或不作为造成的后果承担任何责任。Scrapy爬虫框架用Python编写的功能强大,应用范围最广,最流行的爬虫框架,框架提供了大量的爬虫相关的组件,能够方便快捷的完成各网站的爬取。01Scrapy安装打开scrapy官方网站【scrapy.org】,目前最新版本为2.5:按照官方提供的脚本,在命令行执行安装:pipinst..

    2022年9月18日
    0
  • kit中文_flask和django的对比

    kit中文_flask和django的对比#介绍ImageKit是用于处理图像的Django应用程序。如果需要从原图上生成一个长宽为50×50的图像,则需要ImageKit。ImageKit附带了一系列图像处理器,用于调整大小和裁剪等常见

    2022年7月29日
    4
  • minicom指令_Minicom 使用初步

    minicom指令_Minicom 使用初步因为现在电脑基本不配备串行接口,所以,usb转串口成为硬件调试时的必然选择。目前知道的,PL2303的驱动是有的,在dev下的名称是ttyUSB#。minicom,tkterm都是linux下应用比较广泛的串口软件,这里简单介绍minicom使用。一,安装debian系,比如ubuntu、mint等:sudoapt-getinstallminicom二,配置首先,查看串口设备是否可用。l…

    2022年4月29日
    191
  • Mac配置Jdk 安装及系统环境配置[通俗易懂]

    Mac配置Jdk 安装及系统环境配置

    2022年4月3日
    35
  • 1M 等于多少字节

    1M 等于多少字节1M=1024k=1048576字节算法是:8bit(位)=1Byte(字节)1024Byte(字节)=1KB1024KB=1MB1024MB=1GB1024GB=1TB一个汉字要占用2个字节如果换算成中文汉字那么就是1M=524288个汉字

    2022年5月9日
    89

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号