javacollection_java freemarker

javacollection_java freemarkerlabelmeImagePolygonalAnnotationwithPythonDescriptionLabelmeisagraphicalimageannotationtoolinspiredbyhttp://labelme.csail.mit.edu.ItiswritteninPythonandusesQtforitsgraphica…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

d1e00e0e3adb25fefbda01430efbec37.png

labelme

Image Polygonal Annotation with Python

labelme.svg

labelme.svg

badge.svg?branch=master&event=push

labelme.svg

db9cf80904a89bac0d2060cef7e0833c.png

Description

Labelme is a graphical image annotation tool inspired by http://labelme.csail.mit.edu.

It is written in Python and uses Qt for its graphical interface.

36b38921df0767e20e5bd3b0cd03b835.png

6cddf320dd27f0a00e5029da7cf95c22.png

47df370482364633e8ab6097c90d454d.png

9a7e9a3fd4e889a1fa6880e1188e8e82.png

3e39eea9e50a92c3d306bb6eced87eed.png

VOC dataset example of instance segmentation.

ac1de5a5fa9c3c76c160e0040fc04325.png

annotation.jpg

01d09cace16162b7f5118931d5fa461c.png

Other examples (semantic segmentation, bbox detection, and classification).

b6a1a5512c4e2e11bc330be5655390f7.gif

c4b6bb6548e1c11d85540d2b3fde6352.gif

a3290b699cca1b81174ed928820070ed.png

Various primitives (polygon, rectangle, circle, line, and point).

Features

Image annotation for polygon, rectangle, circle, line and point. (tutorial)

Image flag annotation for classification and cleaning. (#166)

Video annotation. (video annotation)

GUI customization (predefined labels / flags, auto-saving, label validation, etc). (#144)

Exporting VOC-format dataset for semantic/instance segmentation. (semantic segmentation, instance segmentation)

Exporting COCO-format dataset for instance segmentation. (instance segmentation)

Requirements

Ubuntu / macOS / Windows

Python2 / Python3

Installation

There are options:

Platform agonistic installation: Anaconda, Docker

Platform specific installation: Ubuntu, macOS, Windows

Anaconda

You need install Anaconda, then run below:

# python2

conda create –name=labelme python=2.7

sourceactivate labelme

# conda install -c conda-forge pyside2

conda installpyqt

pip installlabelme

# if you’d like to use the latest version. run below:

# pip install git+https://github.com/wkentaro/labelme.git

# python3

conda create –name=labelme python=3.6

sourceactivate labelme

# conda install -c conda-forge pyside2

# conda install pyqt

# pip install pyqt5 # pyqt5 can be installed via pip on python3

pip installlabelme

# or you can install everything by conda command

# conda install labelme -c conda-forge

Docker

You need install docker, then run below:

# on macOS

socat TCP-LISTEN:6000,reuseaddr,fork UNIX-CLIENT:\”$DISPLAY\” &

docker run -it -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=docker.for.mac.host.internal:0 -v $(pwd):/root/workdir wkentaro/labelme

# on Linux

xhost +

docker run -it -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=:0 -v $(pwd):/root/workdir wkentaro/labelme

Ubuntu

# Ubuntu 14.04 / Ubuntu 16.04

# Python2

# sudo apt-get install python-qt4 # PyQt4

sudoapt-get installpython-pyqt5 # PyQt5

sudopip installlabelme

# Python3

sudoapt-get installpython3-pyqt5 # PyQt5

sudopip3 installlabelme

Ubuntu 19.10+ / Debian (sid)

sudoapt-get installlabelme

macOS

# macOS Sierra

brew installpyqt # maybe pyqt5

pip installlabelme # both python2/3 should work

# or install standalone executable / app

# NOTE: this only installs the `labelme` command

brew installwkentaro/labelme/labelme

brew cask installwkentaro/labelme/labelme

Windows

Install Anaconda, then in an Anaconda Prompt run:

# python3

conda create –name=labelme python=3.6

conda activate labelme

pip installlabelme

Usage

Run labelme –help for detail.

The annotations are saved as a JSON file.

labelme # just open gui

# tutorial (single image example)

cdexamples/tutorial

labelme apc2016_obj3.jpg # specify image file

labelme apc2016_obj3.jpg -O apc2016_obj3.json # close window after the save

labelme apc2016_obj3.jpg –nodata # not include image data but relative image path in JSON file

labelme apc2016_obj3.jpg \

–labels highland_6539_self_stick_notes,mead_index_cards,kong_air_dog_squeakair_tennis_ball # specify label list

# semantic segmentation example

cdexamples/semantic_segmentation

labelme data_annotated/ # Open directory to annotate all images in it

labelme data_annotated/ –labels labels.txt # specify label list with a file

For more advanced usage, please refer to the examples:

Command Line Arguments

–output specifies the location that annotations will be written to. If the location ends with .json, a single annotation will be written to this file. Only one image can be annotated if a location is specified with .json. If the location does not end with .json, the program will assume it is a directory. Annotations will be stored in this directory with a name that corresponds to the image that the annotation was made on.

The first time you run labelme, it will create a config file in ~/.labelmerc. You can edit this file and the changes will be applied the next time that you launch labelme. If you would prefer to use a config file from another location, you can specify this file with the –config flag.

Without the –nosortlabels flag, the program will list labels in alphabetical order. When the program is run with this flag, it will display labels in the order that they are provided.

Flags are assigned to an entire image. Example

Labels are assigned to a single polygon. Example

FAQ

How to convert JSON file to numpy array? See examples/tutorial.

How to load label PNG file? See examples/tutorial.

How to get annotations for semantic segmentation? See examples/semantic_segmentation.

How to get annotations for instance segmentation? See examples/instance_segmentation.

Testing

pip installhacking pytest pytest-qt

flake8 .

pytest -v tests

Developing

git clone https://github.com/wkentaro/labelme.git

cdlabelme

# Install anaconda3 and labelme

curl -L https://github.com/wkentaro/dotfiles/raw/master/local/bin/install_anaconda3.sh | bash -s .

source .anaconda3/bin/activate

pip install -e .

How to build standalone executable

Below shows how to build the standalone executable on macOS, Linux and Windows.

Also, there are pre-built executables in

the release section.

# Setup conda

conda create –name labelme python==3.6.0

conda activate labelme

# Build the standalone executable

pip install .

pip installpyinstaller

pyinstaller labelme.spec

dist/labelme –version

Acknowledgement

This repo is the fork of mpitid/pylabelme,

whose development has already stopped.

Cite This Project

If you use this project in your research or wish to refer to the baseline results published in the README, please use the following BibTeX entry.

@misc{labelme2016,

author = {Kentaro Wada},

title = {
{labelme: Image Polygonal Annotation with Python}},

howpublished = {\url{https://github.com/wkentaro/labelme}},

year = {2016}

}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/194785.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • icem搅拌器网格划分_搅拌器研究所的第六个开放电影项目[通俗易懂]

    icem搅拌器网格划分_搅拌器研究所的第六个开放电影项目[通俗易懂]icem搅拌器网格划分BlenderInstitute的第六个电影项目,代号为Gooseberry,已进入BlenderInstitute迄今为止最开放的制作中。如果您到目前为止一直在关注该项目,那么您已经对Blender的“开放式生产”(大量共享)的含义有所了解。艺术家和开发人员共享原始布局动画,开发中的艺术作品以及他们用来制作电影的文件,并每周为粉丝和关注者举办Google…

    2022年5月26日
    37
  • 史上最详细Git使用教程[通俗易懂]

    史上最详细Git使用教程[通俗易懂]本篇为廖雪峰老师官方网站中Git教程的学习笔记Git是世界上最先进的分布式版本控制系统,克隆一个项目的速度非常快每个开发都可以从master上克隆一个本地版本库,就算没有网络,也可以提交代码到本地仓库、查看log、创建项目分支等等每个版本库都可以创建无限个分支,分支是个完整的目录,且这个目录拥有完整的实际文件一、安装网上搜一下安装教程,这里就不介绍了安装完成后,在开始菜单里…

    2022年4月30日
    76
  • 键值对pair「建议收藏」

    什么是pairpair类是C++标准库的一部分,它使得我们可以在一个对象的内部把相同类型或不同类型的两个值关联起来,它被包含在头文件unility中:pair类的结构大致如下:template<classT1,classT2>classpair{public:pair(T1v1,T2v2):first(v1),s…

    2022年4月8日
    119
  • 百度消息中心页面转码失效

    百度消息中心页面转码失效

    2021年8月18日
    61
  • L2-026 小字辈(dfs深搜)「建议收藏」

    L2-026 小字辈(dfs深搜)「建议收藏」原题链接本题给定一个庞大家族的家谱,要请你给出最小一辈的名单。输入格式:输入在第一行给出家族人口总数 N(不超过 100 000 的正整数) —— 简单起见,我们把家族成员从 1 到 N 编号。随后第二行给出 N 个编号,其中第 i 个编号对应第 i 位成员的父/母。家谱中辈分最高的老祖宗对应的父/母编号为 -1。一行中的数字间以空格分隔。输出格式:首先输出最小的辈分(老祖宗的辈分为 1,以下逐级递增)。然后在第二行按递增顺序输出辈分最小的成员的编号。编号间以一个空格分隔,行首尾不得有多余空格。

    2022年8月8日
    5
  • Hybrid App 和 React Native 开发那点事

    Hybrid App 和 React Native 开发那点事简介:HybridApp(混合模式移动应用)开发是指介于Web-app、Native-App这两者之间的一种开发模式,兼具「NativeApp良好用户交互体验的优势」和「WebApp跨平台开发的优势」。很多人都知道,ReactNative是Facebook开源的框架,可以直接用Javascript开发原生的APP,本文则会围绕开发中的具体实践问题进行讨论。

    2025年6月21日
    1

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号