实现labelme批量json_to_dataset方法

实现labelme批量json_to_dataset方法labelme可以帮助我们快速的实现Mask-RCNN中数据集json文件的生成,然而还需要我们进一步的将json转成dataset,可以直接在cmd中执行labelme_json_to_dataset.exeC:\Users\Administrator\Desktop\total\1.json(路径),但是这个过程需要我们一个json文件的生成,过程很慢。一、打开abelm…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

        labelme可以帮助我们快速的实现Mask-RCNN中数据集json文件的生成,然而还需要我们进一步的将json转成dataset,可以直接在cmd中执行labelme_json_to_dataset.exe C:\Users\Administrator\Desktop\total\1.json(路径),但是这个过程需要我们一个json文件的生成,过程很慢。

一、打开abelme安装目录

在lableme安装目录下有G:\Anaconda\Lib\site-packages\labelme\cli目录,可以看到json_to_dataset.py文件

实现labelme批量json_to_dataset方法

这里面提供将json转成dataset的代码,所以我们只需要在这个基础上更改即可。

二、代码实现

复制json_to_dataset.py文件,代码更改:

import argparse
import json
import os
import os.path as osp
import warnings
 
import PIL.Image
import yaml
 
from labelme import utils
import base64
 
def main():
    warnings.warn("This script is aimed to demonstrate how to convert the\n"
                  "JSON file to a single image dataset, and not to handle\n"
                  "multiple JSON files to generate a real-use dataset.")
    parser = argparse.ArgumentParser()
    parser.add_argument('json_file')
    parser.add_argument('-o', '--out', default=None)
    args = parser.parse_args()
 
    json_file = args.json_file
    if args.out is None:
        out_dir = osp.basename(json_file).replace('.', '_')
        out_dir = osp.join(osp.dirname(json_file), out_dir)
    else:
        out_dir = args.out
    if not osp.exists(out_dir):
        os.mkdir(out_dir)
 
    count = os.listdir(json_file) 
    for i in range(0, len(count)):
        path = os.path.join(json_file, count[i])
        if os.path.isfile(path):
            data = json.load(open(path))
            
            if data['imageData']:
                imageData = data['imageData']
            else:
                imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
                with open(imagePath, 'rb') as f:
                    imageData = f.read()
                    imageData = base64.b64encode(imageData).decode('utf-8')
            img = utils.img_b64_to_arr(imageData)
            label_name_to_value = {'_background_': 0}
            for shape in data['shapes']:
                label_name = shape['label']
                if label_name in label_name_to_value:
                    label_value = label_name_to_value[label_name]
                else:
                    label_value = len(label_name_to_value)
                    label_name_to_value[label_name] = label_value
            
            # label_values must be dense
            label_values, label_names = [], []
            for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
                label_values.append(lv)
                label_names.append(ln)
            assert label_values == list(range(len(label_values)))
            
            lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)
            
            captions = ['{}: {}'.format(lv, ln)
                for ln, lv in label_name_to_value.items()]
            lbl_viz = utils.draw_label(lbl, img, captions)
            
            out_dir = osp.basename(count[i]).replace('.', '_')
            out_dir = osp.join(osp.dirname(count[i]), out_dir)
            if not osp.exists(out_dir):
                os.mkdir(out_dir)
 
            PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
            #PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png'))
            utils.lblsave(osp.join(out_dir, 'label.png'), lbl)
            PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))
 
            with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
                for lbl_name in label_names:
                    f.write(lbl_name + '\n')
 
            warnings.warn('info.yaml is being replaced by label_names.txt')
            info = dict(label_names=label_names)
            with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
                yaml.safe_dump(info, f, default_flow_style=False)
 
            print('Saved to: %s' % out_dir)
if __name__ == '__main__':
    main()

然后替换之前json_to_dataset.py文件。

三、执行与查看

在cmd中cd到label_json_to_dataset.py路径下,然后输入

实现labelme批量json_to_dataset方法

路径只需要输入到文件夹即可,不需要具体指定json文件。

然后在安装目录下的Scripts路径下可以查看到批量保存的json文件夹。

如果有兴趣,可以看一下python3.7.0+win10安装labelme实现批量操作的。https://blog.csdn.net/yql_617540298/article/details/111041776

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/195004.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • fiddler和charles哪个好用_电脑15分钟自动重启

    fiddler和charles哪个好用_电脑15分钟自动重启前言Charles是收费软件,可以免费试用30天。试用期过后,未付费的用户仍然可以继续使用,但是每次使用时间不能超过30分钟,并且启动时将会有10秒种的延时。此时,我们只需网上找一个注册码即可解

    2022年7月28日
    12
  • 如何配置java环境变量_java环境变量怎么配置

    如何配置java环境变量_java环境变量怎么配置我们在学习java的时候,必须先来配置一下java的环境变量,也许你不懂什么是java环境变量,我们也不需要懂,你只要知道,java环境变量配置好了,你的电脑就能编译和运行java程序了,这显然是你想要的,好了,下面请跟我一起来做吧!1.首先,我们需要下载JDK安装包,你可以在www.sun.java.com上下载2.然后安装jdk,在安装的过程中选择【开发工具】,记住JDK安装位置。由于这个比较…

    2022年7月8日
    33
  • python aes ecb_python代码封装加密

    python aes ecb_python代码封装加密前言AES加密的模式有很多种,下面来介绍ECB模式的加密解密importbase64fromCrypto.CipherimportAESclassAESECB:def__init

    2022年7月31日
    8
  • post请求406,not acceptable问题[通俗易懂]

    最近在做一个项目,发现自己从ajax发送请求后返回的json数据接收不到,后台没有报错,经测试ajax的seccess内代码没有走,打开浏览器控制台一看,报错post:406not acceptable,接收后台传输过来响应的type为text/html。上网查找类似问题,总结如下:1、@responsebody标签没有加。那么返回的内容会经过视图解析器,加上标签后返回的数据会直接写入到…

    2022年4月9日
    59
  • 算法练习:排列组合之组合和

    算法练习:排列组合之组合和

    2021年9月12日
    65
  • 华硕ac5300最牛设置_acwing是什么

    华硕ac5300最牛设置_acwing是什么每一头牛的愿望就是变成一头最受欢迎的牛。现在有 N 头牛,编号从 1 到 N,给你 M 对整数 (A,B),表示牛 A 认为牛 B 受欢迎。这种关系是具有传递性的,如果 A 认为 B 受欢迎,B 认为 C 受欢迎,那么牛 A 也认为牛 C 受欢迎。你的任务是求出有多少头牛被除自己之外的所有牛认为是受欢迎的。输入格式第一行两个数 N,M;接下来 M 行,每行两个数 A,B,意思是 A 认为 B 是受欢迎的(给出的信息有可能重复,即有可能出现多个 A,B)。输出格式输出被除自己之外的所有牛认为是

    2022年8月10日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号