随机梯度下降SGD算法实现_什么是梯度下降法

随机梯度下降SGD算法实现_什么是梯度下降法随机梯度下降算法(Stochasticgradientdescent,SGD)在神经网络模型训练中,是一种很常见的优化算法。这种算法是基于梯度下降算法产生的,所以要理解随机梯度下降算法,必须要对梯度下降算法有一个全面的理解。梯度下降:这个算法我在之前的博文LogisticRegression的数学推导过程以及Python实现中有详细的说明介绍,这里我们再来简单回顾一下梯度下降算法:假设…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

随机梯度下降算法(Stochastic gradient descent,SGD)在神经网络模型训练中,是一种很常见的优化算法。这种算法是基于梯度下降算法产生的,所以要理解随机梯度下降算法,必须要对梯度下降算法有一个全面的理解。

梯度下降:

这个算法我在之前的博文Logistic Regression的数学推导过程以及Python实现 中有详细的说明介绍,这里我们再来简单回顾一下梯度下降算法:假设在逻辑斯蒂回归中,预测函数为 h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n {h_\theta }(x) = {\theta _0} + {\theta _1}{x_1} + {\theta _2}{x_2} + … + {\theta _n}{x_n} hθ(x)=θ0+θ1x1+θ2x2+...+θnxn,我们用平方损失函数可以得到这个函数的损失函数: J ( θ ) = 1 2 ∑ i = 1 m ( h θ ( x ) − y ) 2 J(\theta ) = \frac{1}{2}\sum\limits_{i = 1}^m {
{
{({h_\theta }(x) – y)}^2}}
J(θ)=21i=1m(hθ(x)y)2

我们的目标就是最小化函数的损失函数,我们就对每一个 θ i {\theta _i} θi 超参数求偏导,就可以得到当前这一轮的梯度,然后损失函数向梯度的反方向进行更新,不断这样进行迭代更新,就可以得到超参数的全局最优解。运用链式求导方法,数学过程可以表示成:
∂ ∂ θ j J ( θ ) = ∂ ∂ θ j 1 2 ( h θ ( x ) − y ) 2 = ( h θ ( x ) − y ) ⋅ ∂ ∂ θ j ( h θ ( x ) − y ) = ( h θ ( x ) − y ) ⋅ ∂ ∂ θ j ( ∑ i = 0 n θ i x i − y ) = ( h θ ( x ) − y ) x j \frac{\partial }{
{\partial {\theta _j}}}J(\theta ) = \frac{\partial }{
{\partial {\theta _j}}}\frac{1}{2}{({h_\theta }(x) – y)^2} = ({h_\theta }(x) – y) \cdot \frac{\partial }{
{\partial {\theta _j}}}({h_\theta }(x) – y) \\= ({h_\theta }(x) – y) \cdot \frac{\partial }{
{\partial {\theta _j}}}(\sum\limits_{i = 0}^n {
{\theta _i}{x_i}} – y) = ({h_\theta }(x) – y){x_j}
θjJ(θ)=θj21(hθ(x)y)2=(hθ(x)y)θj(hθ(x)y)=(hθ(x)y)θj(i=0nθixiy)=(hθ(x)y)xj

这是每一轮迭代的梯度,我们加上 l e a r n i n g learning learning r a t e rate rate α \alpha α,就可以得到完整的梯度下降的公式:
θ j : = θ j − α ( h θ ( x ) − y ) x j {\theta _j}: = {\theta _j} – \alpha ({h_\theta }(x) – y){x_j} θj:=θjα(hθ(x)y)xj
这个过程就像是在一个山脉中寻找一个最低的山谷,我们用学习率为 α \alpha α 的步长一步步地向山谷的大致方向移动,我们每一步只能向山谷的方向靠近,每一步都在进步,整个过程可以参考下面的动图(图片来自知乎-量子位):
GD
在图中可见,小球从山顶从不同的方向梯度滚下山,这就是梯度下降的过程。但是梯度下降算法每一步的更新都需要计算所有超参数的梯度,迭代速度必然会很慢,我们有没有比较快速的梯度下降算法呢,这里就可以用到我们的随机梯度下降算法
这个算法的流程就是在每次更新的时候使用一个样本进行梯度下降,所谓的随机二字,就是说我们可以随机用一个样本来表示所有的样本,来调整超参数 θ \theta θ ,算法的公式如下所示:
L o o p Loop Loop {

f o r for for i i i i n in in r a n g e ( m ) : range(m): range(m): {

θ j : = θ j  +  α ( y ( i ) − h θ ( x ( i ) ) ) x j ( i ) {\theta _j}: = {\theta _j}{\text{ + }}\alpha ({y^{(i)}} – {h_\theta }({x^{(i)}}))x_j^{(i)} θj:=θj + α(y(i)hθ(x(i)))xj(i)
}
}
因为这个样本是随机的,所以每次迭代没有办法得到一个准确的梯度,这样一来虽然每一次迭代得到的损失函数不一定是朝着全局最优方向,但是大体的方向还是朝着全局最优解的方向靠近,直到最后,得到的结果通常就会在全局最优解的附近。这种算法相比普通的梯度下降算法,收敛的速度更快,所以在一般神经网络模型训练中,随机梯度下降算法 SGD 是一种非常常见的优化算法。
这就是大家在训练神经网络模型中常见的随机梯度下降SGD算法,希望可以帮助大家在理解优化算法上有所帮助,谢谢。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/195362.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • method_exists函数

    method_exists函数
    method_exists(mixed$object,string$method_name)—Checksiftheclassmethodexists
    确认$object类中是否存在$method_name的方法。如果存在返回TRUE;如果不存在返回FALSE.

    2022年7月15日
    14
  • Doc2Vec,Word2Vec文本相似度 初体验。

    Doc2Vec,Word2Vec文本相似度 初体验。

    2022年4月2日
    32
  • synchronousqueue场景_SynchronousQueue原理解析

    synchronousqueue场景_SynchronousQueue原理解析经典的生产者-消费者模式,操作流程是这样的:有多个生产者,可以并发生产产品,把产品置入队列中,如果队列满了,生产者就会阻塞;有多个消费者,并发从队列中获取产品,如果队列空了,消费者就会阻塞;image.pngSynchronousQueue也是一个队列来的,但它的特别之处在于它内部没有容器,一个生产线程,当它生产产品(即put的时候),如果当前没有人想要消费产品(即当前没有线程执行take),此…

    2022年6月22日
    22
  • Windows 下使用 Mingw32-make 来执行 Makefile示例[通俗易懂]

    文章目录先下载Mingw设置好环境变量确认安装环境状态gccmingw32-makeC工程测试main.cmath.ccall_math.c准备好Makefile文件执行Makefile执行前执行后运行main.exe执行Makefileclean清理文件执行前执行后整体运行演示GIFReferernces先下载Mingw这里使用的是mingw32不是64的,需要64位的自行搜索下载32位的可以参考我之前一篇的:C-BookNote-Win开发环境设置

    2022年4月8日
    169
  • 管理学第三章_企业集团管理第五章自测

    管理学第三章_企业集团管理第五章自测文章目录主要内容项目范围6个过程范围管理的重要性总表5.1范围管理概述5.2规划范围管理5.3收集需求主要内容项目范围6个过程(1)规划范围管理:对如何定义、确认和控制项目范围的过程进行描述。(2)收集需求:为实现项目目标,明确并记录项目干系人的相关需求的过程。(3)定义范围:详细描述产品范围和项目范围,编制项目范围说明书,作为以后项目决策的基础。(4)刨建工作分解结构(WBS):把整个项目工作分解为较小的、易于管理的组成部分,形成一个自上而下的分解结构。(5)确认范围:正式验收已完成的可交付

    2022年9月22日
    0
  • iphone上的设备管理去哪里了_iPhone设备管理在哪里找

    iphone上的设备管理去哪里了_iPhone设备管理在哪里找正常是没有设备管理的选项的,当你的iPhone上有未信任程序(已经安装好的才行,正在下载/安装的都不算)时才会有这个选项设置>通用>设备管理

    2022年8月4日
    8

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号