给出前序遍历和中序遍历求二叉树_已知前序遍历和后序遍历

给出前序遍历和中序遍历求二叉树_已知前序遍历和后序遍历一、基本概念1.先序遍历(NLR)可以确定二叉树的父子结点;2.中序遍历(LNR)可以确定二叉树的左右子树;3.后序遍历(LRN)可以确定二叉树的父子结点;二、结论1.已知先序遍历,中序遍历序列,能够创建出一棵唯一的二叉树,可以得出二叉树的后序遍历;2.已知后序遍历,中序遍历序列,能够创建出一棵唯一的二叉树,进而可以得出二叉树的先序序列;3.综上,必须含有中序遍历(确定…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

一、基本概念

1.先序遍历(NLR)可以确定二叉树的父子结点

2.中序遍历(LNR)可以确定二叉树的左右子树

3.后序遍历(LRN)可以确定二叉树的父子结点

二、结论

1.已知先序遍历,中序遍历序列,能够创建出一棵唯一的二叉树,可以得出二叉树的后序遍历;

2.已知后序遍历,中序遍历序列,能够创建出一棵唯一的二叉树,进而可以得出二叉树的先序序列;

3.综上,必须含有中序遍历(确定二叉树左右孩子),先序遍历或者后序遍历任选一个(确定二叉树父子结点),就可以确定一棵唯一的二叉树

三、C++代码实现

1.已知先序遍历和中序遍历,打印后序遍历(见函数void postorder(string preorder, string inorder));

2.已知中序遍历和后序遍历,打印先序遍历(见函数void preorder(string inorder, string postorder));

#include<iostream>
#include<string>
using namespace std;
/*
假设根节点在中序遍历中的位置为pos,树的结点数为len,即 len=inorder.length() 
代码:pos = inorder.find(preorder[0]) or pos = inorder.find(postorder[postorder.size()-1]) 
先序遍历(NLR), 根节点编号(0), 左子树编号(1~pos), 右子树编号(pos+1~len-1) 
中序遍历(LNR), 左子树编号(0~pos-1), 根节点编号(pos), 右子树编号(pos+1~len-1)  
后序遍历(LRN), 左子树编号(0~pos-1), 右子树编号(pos~len-2), 根点编号(len-1) 
*/
void postorder(string preorder,string inorder){//由先序遍历+中序遍历序列,递归实现后序遍历 (LRN) 
	int len = preorder.length();
	if(len==0)
		return;
	if(len==1)
	{  //单个结点 
		cout<<preorder[0];
		return;
	}
	int pos=inorder.find(preorder[0]);   // 查找根节点在中序序列中的位置,通过根节点划分左右子树 
    // 类似于后序遍历过程
	postorder(preorder.substr(1,pos), inorder.substr(0,pos));//后序遍历左子树
	postorder(preorder.substr(pos+1,len-pos-1), inorder.substr(pos+1,len-pos-1));//后序遍历右子树,pos从0开始,所以len-pos-1 
	cout<<preorder[0];    //最后输出根节点 
}
void preorder(string inorder, string postorder) //由中序遍历+后序遍历序列,递归实现先序序列 (NLR)
{
	int len = postorder.length();
	if (len == 0) // 空树 
		return;     
	if(len == 1)   // 单个结点
	{
		cout<<inorder[0];
		return ;
	}
	int pos = inorder.find(postorder[len-1]);
    // 类似于先序遍历过程
	cout<<postorder[len-1]; 
	preorder(inorder.substr(0, pos),  postorder.substr(0, pos)); //先序遍历左子树 
	preorder(inorder.substr(pos+1, len-pos-1), postorder.substr(pos, len-pos-1));//先序遍历右子树 
}

int main()
{
    string s1,s2;
    while(cin>>s1>>s2)
    {
        postorder(s1,s2);
     	// preorder(s1, s2); 
        cout<<endl;
    }
}

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/195380.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 浅谈cookie跨域的解决方案——document.domain[通俗易懂]

    浅谈cookie跨域的解决方案——document.domain[通俗易懂]cookie的名/值对中的值不允许出现分号、逗号和空白符,因此在设置cookie前要用encodeURIComponent()编码,读取时再用decodeURIComponent()解码。cookie默认的有效期是浏览器会话期间,作用域是整个浏览器而不仅仅局限于窗口或标签页。若要延长cookie的有效期,可以设置max-age属性。cookie的domain和path属性:1.

    2022年7月27日
    22
  • [高通MSM8953_64][Android10]移除开机进入充电界面

    [高通MSM8953_64][Android10]移除开机进入充电界面文章目录开发平台基本信息问题描述解决方法开发平台基本信息芯片:MSM8953_64版本:Android10kernel:msm-4.9问题描述在移植开发Android10的时候,一开始是用debug版本编译调试的,一直都很正常,然后,准备提交测试的时候,编译user版本却无法正常进入系统,一直在开机logo跟充电界面循环跳转。这是因为设备进入了关机充电模式导致的,在lk阶段,将充电界面屏蔽,即可正常进入系统。解决方法diff–gita/bootable/bootloader

    2022年10月20日
    1
  • 自己动手写Vue插件Toast

    自己动手写Vue插件Toast

    2022年3月3日
    40
  • Cocos2d-x3.1TestCpp之NewRenderTest Demo分析

    Cocos2d-x3.1TestCpp之NewRenderTest Demo分析

    2022年2月6日
    52
  • navicat15永久激活码最新【2021免费激活】[通俗易懂]

    (navicat15永久激活码最新)JetBrains旗下有多款编译器工具(如:IntelliJ、WebStorm、PyCharm等)在各编程领域几乎都占据了垄断地位。建立在开源IntelliJ平台之上,过去15年以来,JetBrains一直在不断发展和完善这个平台。这个平台可以针对您的开发工作流进行微调并且能够提供…

    2022年3月30日
    487
  • 系统功能测试用例模板「建议收藏」

    系统功能测试用例模板「建议收藏」系统功能测试用例模板 用例名称 订单支付_银联卡支付_支付银行卡处于欺诈名单当中 用例目录 订单支付/银联卡支付/ 用例编号 Payment037 功能模块 结账支付 优先级别 2 相关需求 《结账支付功能规格说明》 数据准备 余额充足的支付用银联银行卡、已注册的前台用户 前置条件 1.用户已登录 2.用户已将商品加入购物车并触发订单结算流程 3.用户将订单支付流程推进至用银行卡支付节点 步骤 测试

    2022年7月17日
    19

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号