DSSM & Multi-view DSSM TensorFlow实现

DSSM & Multi-view DSSM TensorFlow实现LearningDeepStructuredSemanticModelsforWebSearchusingClickthroughData以及其后续文章AMulti-ViewDeepLearningApproachforCrossDomainUserModelinginRecommendationSystems的实现Demo。1.数据D

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

Learning Deep Structured Semantic Models for Web Search using Clickthrough Data以及其后续文章

A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems的实现Demo。

1. 数据

DSSM,对于输入数据是Query对,即Query短句和相应的展示,展示中分点击和未点击,分别为正负样,同时对于点击的先后顺序,也是有不同赋值,具体可参考论文。

对于我的Query数据本人无权开放,还请自行寻找数据。

2. word hashing

原文使用3-grams,对于中文,我使用了uni-gram,因为中文本身字有一定代表意义(也有论文拆笔画),对于每个gram都使用one-hot编码代替,最终可以大大降低短句维度。

3. 结构

结构图:

DSSM & Multi-view DSSM TensorFlow实现

  1. 把条目映射成低维向量。
  2. 计算查询和文档的cosine相似度。

3.1 输入

这里使用了TensorBoard可视化,所以定义了name_scope:

with tf.name_scope('input'):
    query_batch = tf.sparse_placeholder(tf.float32, shape=[None, TRIGRAM_D], name='QueryBatch')
    doc_positive_batch = tf.sparse_placeholder(tf.float32, shape=[None, TRIGRAM_D], name='DocBatch')
    doc_negative_batch = tf.sparse_placeholder(tf.float32, shape=[None, TRIGRAM_D], name='DocBatch')
    on_train = tf.placeholder(tf.bool)

Jetbrains全家桶1年46,售后保障稳定

3.2 全连接层

我使用三层的全连接层,对于每一层全连接层,除了神经元不一样,其他都一样,所以可以写一个函数复用。
l n = W n x + b 1 l_n = W_n x + b_1 ln=Wnx+b1

def add_layer(inputs, in_size, out_size, activation_function=None):
    wlimit = np.sqrt(6.0 / (in_size + out_size))
    Weights = tf.Variable(tf.random_uniform([in_size, out_size], -wlimit, wlimit))
    biases = tf.Variable(tf.random_uniform([out_size], -wlimit, wlimit))
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs

其中,对于权重和Bias,使用了按照论文的特定的初始化方式:

	wlimit = np.sqrt(6.0 / (in_size + out_size))
    Weights = tf.Variable(tf.random_uniform([in_size, out_size], -wlimit, wlimit))
    biases = tf.Variable(tf.random_uniform([out_size], -wlimit, wlimit))

Batch Normalization

def batch_normalization(x, phase_train, out_size):
    """ Batch normalization on convolutional maps. Ref.: http://stackoverflow.com/questions/33949786/how-could-i-use-batch-normalization-in-tensorflow Args: x: Tensor, 4D BHWD input maps out_size: integer, depth of input maps phase_train: boolean tf.Varialbe, true indicates training phase scope: string, variable scope Return: normed: batch-normalized maps """
    with tf.variable_scope('bn'):
        beta = tf.Variable(tf.constant(0.0, shape=[out_size]),
                           name='beta', trainable=True)
        gamma = tf.Variable(tf.constant(1.0, shape=[out_size]),
                            name='gamma', trainable=True)
        batch_mean, batch_var = tf.nn.moments(x, [0], name='moments')
        ema = tf.train.ExponentialMovingAverage(decay=0.5)

        def mean_var_with_update():
            ema_apply_op = ema.apply([batch_mean, batch_var])
            with tf.control_dependencies([ema_apply_op]):
                return tf.identity(batch_mean), tf.identity(batch_var)

        mean, var = tf.cond(phase_train,
                            mean_var_with_update,
                            lambda: (ema.average(batch_mean), ema.average(batch_var)))
        normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3)
    return normed

单层

with tf.name_scope('FC1'):
    # 激活函数在BN之后,所以此处为None
    query_l1 = add_layer(query_batch, TRIGRAM_D, L1_N, activation_function=None)
    doc_positive_l1 = add_layer(doc_positive_batch, TRIGRAM_D, L1_N, activation_function=None)
    doc_negative_l1 = add_layer(doc_negative_batch, TRIGRAM_D, L1_N, activation_function=None)

with tf.name_scope('BN1'):
    query_l1 = batch_normalization(query_l1, on_train, L1_N)
    doc_l1 = batch_normalization(tf.concat([doc_positive_l1, doc_negative_l1], axis=0), on_train, L1_N)
    doc_positive_l1 = tf.slice(doc_l1, [0, 0], [query_BS, -1])
    doc_negative_l1 = tf.slice(doc_l1, [query_BS, 0], [-1, -1])
    query_l1_out = tf.nn.relu(query_l1)
    doc_positive_l1_out = tf.nn.relu(doc_positive_l1)
    doc_negative_l1_out = tf.nn.relu(doc_negative_l1)
······

合并负样本

with tf.name_scope('Merge_Negative_Doc'):
    # 合并负样本,tile可选择是否扩展负样本。
    doc_y = tf.tile(doc_positive_y, [1, 1])
    for i in range(NEG):
        for j in range(query_BS):
            # slice(input_, begin, size)切片API
            doc_y = tf.concat([doc_y, tf.slice(doc_negative_y, [j * NEG + i, 0], [1, -1])], 0)

3.3 计算cos相似度

with tf.name_scope('Cosine_Similarity'):
    # Cosine similarity
    # query_norm = sqrt(sum(each x^2))
    query_norm = tf.tile(tf.sqrt(tf.reduce_sum(tf.square(query_y), 1, True)), [NEG + 1, 1])
    # doc_norm = sqrt(sum(each x^2))
    doc_norm = tf.sqrt(tf.reduce_sum(tf.square(doc_y), 1, True))

    prod = tf.reduce_sum(tf.multiply(tf.tile(query_y, [NEG + 1, 1]), doc_y), 1, True)
    norm_prod = tf.multiply(query_norm, doc_norm)

    # cos_sim_raw = query * doc / (||query|| * ||doc||)
    cos_sim_raw = tf.truediv(prod, norm_prod)
    # gamma = 20
    cos_sim = tf.transpose(tf.reshape(tf.transpose(cos_sim_raw), [NEG + 1, query_BS])) * 20

3.4 定义损失函数

with tf.name_scope('Loss'):
    # Train Loss
    # 转化为softmax概率矩阵。
    prob = tf.nn.softmax(cos_sim)
    # 只取第一列,即正样本列概率。
    hit_prob = tf.slice(prob, [0, 0], [-1, 1])
    loss = -tf.reduce_sum(tf.log(hit_prob))
    tf.summary.scalar('loss', loss)

3.5选择优化方法

with tf.name_scope('Training'):
    # Optimizer
    train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(loss)

3.6 开始训练

# 创建一个Saver对象,选择性保存变量或者模型。
saver = tf.train.Saver()
# with tf.Session(config=config) as sess:
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train', sess.graph)
    start = time.time()
    for step in range(FLAGS.max_steps):
        batch_id = step % FLAGS.epoch_steps
        sess.run(train_step, feed_dict=feed_dict(True, True, batch_id % FLAGS.pack_size, 0.5))

GitHub完整代码 https://github.com/InsaneLife/dssm

Multi-view DSSM实现同理,可以参考GitHub:multi_view_dssm

CSDN原文:http://blog.csdn.net/shine19930820/article/details/79042567

注意:
由于之前代码api过时,已更新最新代码于:https://github.com/InsaneLife/dssm/blob/master/dssm_rnn.py 数据处理代码data_input.py 和数据data 已经更新,由于使用了rnn,所以输入非bag of words方式。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/200895.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • goland2021激活服务器 3月最新注册码

    goland2021激活服务器 3月最新注册码,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月15日
    45
  • ATA考试该注意什么[通俗易懂]

    ATA考试该注意什么[通俗易懂]一、考试前将所有计算机除掉还原卡及还原软件。二、officeXp安装要用完全安装。三、服务器端尽量不要刷新所有客户端否则引起考试管理系统死机。四、拍照功能无法使用,可重新启动考试管理系统。五、服务器端无法扫描到客户端,除了服务器与客户端必须在同一网段内,可看一下客户端是否启动llistening…

    2022年7月13日
    13
  • 常用建模方法_建模方法有哪几种

    常用建模方法_建模方法有哪几种数据建模世界上物品种类有千万种,各种信息更是层出不穷,每种信息都有各自独特的格式和表达方式,如何对信息进行描述,按照一定的方式进行转化,使之形成适合存储的数据格式,称之为建模。常用的有实体建模法,维度建模法,范式建模法三种数据建模方法,不管哪种数据建模方法都是使信息结构清晰、易于存储和读取。(1)实体建模法 实体是现实世界中存在的事物或发生的事件,是现实世界中任何可识别、可区分的事物。…

    2022年9月23日
    0
  • 【12】进大厂必须掌握的面试题-持续测试面试

    Q1。什么是连续测试? 我将建议您遵循以下提到的解释: 连续测试是作为软件交付管道的一部分执行自动测试的过程,以获得与最新版本相关的业务风险的即时反馈。这样,每个构建都将得到持续测…

    2020年10月19日
    297
  • 教你搭建你自己的Git服务器

    教你搭建你自己的Git服务器

    2021年10月9日
    34
  • hibernate二级缓存策略

    hibernate二级缓存策略ibernate二级缓存策略2008-08-0111:00相关文章:关于HibernateCache数据库对象的缓存策略Spring+Hibernate缓存不起作用推荐圈子:JBPM@net更多相关推荐很多人对二级缓存都不太了解,或者是有错误的认识,我一直想写一篇文章介绍一下hibernate的二级缓存的,今天终于忍不住了。我的经验主要来自hi

    2022年5月23日
    28

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号