矢量积与叉乘_向量积叉乘的几何意义

矢量积与叉乘_向量积叉乘的几何意义矢量叉乘,向量外积原创不易,路过的各位大佬请点个赞矢量叉乘,向量外积矢量叉乘,向量外积1.矢量叉乘定义2.模长3.方向4.坐标运算6.叉乘矩阵(斜对称矩阵)6.叉乘运算规则1.矢量叉乘定义定义两个向量a\mathbf{a}a和b\mathbf{b}b,他们的叉乘可以写为a×b\mathbf{a}\times\mathbf{b}a×b本质上向量叉乘为向量旋转,满足右手螺旋准则;叉乘结果是一个向量,向量模长是向量A,B组成平行四边形的面积;向量方向是垂直于向量A,B组成的平面;也

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

矢量叉乘,向量外积

原创不易,路过的各位大佬请点个赞

在这里插入图片描述

1. 矢量叉乘定义

定义两个向量 a \mathbf{a} a b \mathbf{b} b,他们的叉乘可以写为
a × b \mathbf{a}\times\mathbf{b} a×b

本质上向量叉乘为向量旋转,满足右手螺旋准则;
叉乘结果是一个向量,向量模长是向量A,B组成平行四边形的面积;向量方向是垂直于向量A,B组成的平面;也叫向量积
在这里插入图片描述

与点乘不同之处是:点乘结果是一个数,表示两个向量的投影关系,也叫数量积
a ⋅ b = ∣ a ∣ ∣ b ∣ cos ⁡ θ \mathbf{a}\cdot\mathbf{b}=|\mathbf{a}||\mathbf{b}|\cos\theta ab=abcosθ

2. 模长

∣ c ∣ = ∣ a × b ∣ = ∣ a ∣ ∣ b ∣ sin ⁡ θ |\mathbf{c}|=|\mathbf{a}\times\mathbf{b}|=|\mathbf{a}||\mathbf{b}|\sin\theta c=a×b=absinθ
∣ c ∣ |\mathbf{c}| c长度在数值上等于以 a \mathbf{a} a b \mathbf{b} b,夹角为θ组成的平行四边形的面积。
而c的方向垂直于 a \mathbf{a} a b \mathbf{b} b所决定的平面, c \mathbf{c} c的指向按右手定则从a转向b来确定。

3. 方向

a \mathbf{a} a向量与 b \mathbf{b} b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从 a \mathbf{a} a以不超过180度的转角转向b时,竖起的大拇指指向是 c \mathbf{c} c的方向。)
在这里插入图片描述

4. 坐标运算

向量 a \mathbf{a} a的坐标表示
a = ( a x , a y , a z ) \mathbf{a}=(a_x, a_y, a_z) a=(ax,ay,az)
向量 a \mathbf{a} a的坐标轴矢量表示
a = a x i + a y j + a z k \mathbf{a}=a_xi+a_yj+ a_zk a=axi+ayj+azk

其中矢量的x轴、y轴、z轴的单位矢量i、j、k、满足以下关系

i × j = k = − j × i j × k = i = − k × j k × i = j = − i × k i × i = j × j = k × k = 0 i\times j=k=-j\times i\\j\times k=i=-k\times j\\k\times i=j=-i\times k\\ i\times i=j\times j=k\times k=0 i×j=k=j×ij×k=i=k×jk×i=j=i×ki×i=j×j=k×k=0
其中的0为零矢量。
附加点乘的运算规则
i ⋅ j = k = − j × i j ⋅ k = i = − k ⋅ j k ⋅ i = j = − i ⋅ k i ⋅ i = j ⋅ j = k ⋅ k = 1 i\cdot j=k=-j\times i\\j\cdot k=i=-k\cdot j\\k\cdot i=j=-i\cdot k\\ i\cdot i=j\cdot j=k\cdot k=1 ij=k=j×ijk=i=kjki=j=ikii=jj=kk=1

a × b = ∣ i j k a x a y a z b x b y b z ∣ = ∣ a y a z b y b z ∣ i − ∣ a x a z b x b z ∣ j + ∣ a x a y b x b y ∣ k = ( a y b z − a z b y ) i + ( a z b x − a x b z ) j + ( a x b y − a y b x ) k \begin{aligned} \mathbf{a}\times\mathbf{b}&=\begin{vmatrix} i&j&k\\ a_x&a_y&a_z\\b_x&b_y&b_z\end{vmatrix}\\ &=\begin{vmatrix}a_y&a_z\\b_y&b_z\end{vmatrix}i -\begin{vmatrix}a_x&a_z\\b_x&b_z\end{vmatrix}j + \begin{vmatrix}a_x&a_y\\b_x&b_y\end{vmatrix}k \\ &=(a_yb_z-a_zb_y)i + (a_zb_x-a_xb_z)j + (a_xb_y-a_yb_x)k \end{aligned} a×b=iaxbxjaybykazbz=aybyazbziaxbxazbzj+axbxaybyk=(aybzazby)i+(azbxaxbz)j+(axbyaybx)k

6. 叉乘矩阵(斜对称矩阵)

每一个矢量都一个对应的斜对称矩阵, a \mathbf{a} a
[ a × ] = [ 0 − a y a z a y 0 − a x − a z a x 0 ] [\mathbf{a}\times]=\begin{bmatrix}0&-a_y&a_z\\a_y&0&-a_x\\ -a_z &a_x &0\end{bmatrix} [a×]=0ayazay0axazax0

则两个矢量的叉乘可以写为
a × b = [ a × ] b = [ 0 − a y a z a y 0 − a x − a z a x 0 ] [ b x b y b z ] \begin{aligned} \mathbf{a}\times\mathbf{b}&=[\mathbf{a}\times]\mathbf{b}\\ &=\begin{bmatrix}0&-a_y&a_z\\a_y&0&-a_x\\ -a_z &a_x &0\end{bmatrix}\begin{bmatrix}b_x\\b_y\\ b_z\end{bmatrix} \end{aligned} a×b=[a×]b=0ayazay0axazax0bxbybz

性质:( A = [ a × ] A=[\mathbf{a}\times] A=[a×]
1- A T = − A A^T=-A AT=A
2- A A A B B B为斜对称矩阵,则 A + B A+B A+B为斜对称矩阵
3- k k k为偶数, A k A^k Ak为对称矩阵; k k k为奇数, A k A^k Ak为斜对称矩阵;

6. 叉乘运算规则

1、交换律: a × b = − b × a a\times b=-b\times a a×b=b×a

2、分配律: a × ( b + c ) = a × b + a × c a\times (b+c)=a\times b +a\times c a×b+c)=a×b+a×c

3、与标量r相乘: r a × b = r ( a × b ) ra\times b=r(a\times b ) ra×b=r(a×b)

4、不满足结合律,但满足雅可比恒等式:: a × ( b × c ) + b × ( c × a ) + c × ( a × b ) = 0 a×(b×c)+b×(c×a)+c×(a×b)=0 a×b×c+b×c×a+c×a×b=0

5 、 两个非零向量a和b平行,当且仅当 a × b = 0 a×b=0 a×b=0

6、 拉格朗日公式
( a × b ) × c = b ( a ⋅ c ) − a ( b ⋅ c ) (a×b)×c=b(a·c)-a(b·c) a×b×c=bacabc
a × ( b × c ) = b ( a ⋅ c ) − c ( a ⋅ b ) a×(b×c)=b(a·c)-c(a·b) a×b×c=baccab
证明如下图
在这里插入图片描述
原创不易,路过的各位大佬请点个赞

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/210055.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Pytest(6)重复运行用例pytest-repeat[通俗易懂]

    Pytest(6)重复运行用例pytest-repeat[通俗易懂]前言平常在做功能测试的时候,经常会遇到某个模块不稳定,偶然会出现一些bug,对于这种问题我们会针对此用例反复执行多次,最终复现出问题来。自动化运行用例时候,也会出现偶然的bug,可以针对单个用例,

    2022年7月28日
    7
  • 删除卡巴斯基激活码

    删除卡巴斯基激活码

    2021年7月24日
    57
  • python之初接触

    编程语言相关1什么是编程语言2 编程语言的分类以及优缺点编程语言从诞生开始到现在大致经历了三个阶段:机器语言汇编语言高级语言解释类:执行方式类似于我们日常生活中的“同声翻译”,应

    2022年3月29日
    72
  • 线程指令重排[通俗易懂]

    线程指令重排[通俗易懂]1、指令重排JVM为优化执行效率对线程内的执行顺序进行重排,对单线程来说执行指令重排并不会影响程序从上到下执行的代码逻辑。但是在多线程的情况下,则可能会出现问题。2、指令重排原则程序顺序原则:一个线程内保证语义的串行性volatile规则:volatile变量的写,先发生于读锁规则:解锁(unlock)必然发生在随后的加锁(lock)前传递性:A先于B,B先于C那么A必然先于C线程的start方…

    2022年10月18日
    4
  • SQLite下载、安装和使用并Qt链接SQLIte全部教程(windows)

    SQLite下载、安装和使用并Qt链接SQLIte全部教程(windows)第一步 下载 SQLIte 下载地址 https www sqlite org download html 下载两个内容 sqlite dll win64 x64 3360000 zipsqlite tools win32 x86 3360000 zip 下载完后直接解压 放到到一个文件夹下 这个文件夹可以随便在哪里 如下图 第二步 使用 SQLite 网上好多教程都是到这一步就配置环境变量 不知道他们脑子咋想的 轻量级数据库 SQLIte 本来就应该随着项目到处走 直接在解压且合并后

    2025年7月21日
    3
  • AES加密解密——AES在JavaWeb项目中前台JS加密,后台Java解密的使用「建议收藏」

    一:前言 在软件开发中,经常要对数据进行传输,数据在传输的过程中可能被拦截,被监听,所以在传输数据的时候使用数据的原始内容进行传输的话,安全隐患是非常大的。因此就要对需要传输的数据进行在客户端进行加密,然后在服务器进行解密! 加密和解密的算法有很多,主流有对称加密和非对称加密!两者的区别就不在这里做介绍,有不懂的朋友可以去查Google。 (精读阅读本篇可能花费您10…

    2022年2月26日
    46

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号