keras卷积层_keras实现全卷积神经网络

keras卷积层_keras实现全卷积神经网络分组卷积在pytorch中比较容易实现,只需要在卷积的时候设置group参数即可比如设置分组数为2conv_group=nn.Conv2d(C_in,C_out,kernel_size=3,stride=3,padding=1,groups=2)但是,tensorflow中目前还没有分组卷积,只能自己手动编写分组卷积函数。在编写程序之前大家要先理解分组卷积的形式,也就是对特征图在通道上进行划分,例如设置group=3,对输入特征图通道划分成三组,输出特征图也要划分成3组,再对三组输入输出特

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

分组卷积在pytorch中比较容易实现,只需要在卷积的时候设置group参数即可
比如设置分组数为2

conv_group = nn.Conv2d(C_in,C_out,kernel_size=3,stride=3,padding=1,groups = 2)

Jetbrains全家桶1年46,售后保障稳定

但是,tensorflow中目前还没有分组卷积,只能自己手动编写分组卷积函数。
在编写程序之前大家要先理解分组卷积的形式,也就是对特征图在通道上进行划分,例如设置group=3,对输入特征图通道划分成三组,输出特征图也要划分成3组,再对三组输入输出特征图分别进行卷积。
实现过程如下:
1.获取输入特征图和输出特征图通道数,再结合分组数进行划分
2.对输入特征图的每一组进行单独卷积
3.将每组卷积后的结果进行通道上的拼接
代码如下:

def group_conv(x, filters, kernel, stride, groups):
   
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
    in_channels = K.int_shape(x)[channel_axis]#计算输入特征图的通道数
    nb_ig = in_channels // groups#对输入特征图通道进行分组
    nb_og = filters // groups#对输出特征图通道进行分组
    
    gc_list = []
    for i in range(groups):
        if channel_axis == -1:
            x_group = Lambda(lambda z: z[:, :, :, i * nb_ig: (i + 1) * nb_ig])(x)
        else:
            x_group = Lambda(lambda z: z[:, i * nb_ig: (i + 1) * nb_ig, :, :])(x)
        gc_list.append(Conv2D(filters=nb_og, kernel_size=kernel, strides=stride, 
                              padding='same', use_bias=False)(x_group))#对每组特征图进行单独卷积
        
    return Concatenate(axis=channel_axis)(gc_list)#在通道上进行特征图的拼接
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/226858.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号