栈和队列讲解_栈和队列的优缺点

栈和队列讲解_栈和队列的优缺点目录1、栈(1)栈的概念及结构(2)栈的实现2、队列(1)队列的概念及结构(2)队列的实现前言:栈和队列是在顺序表和链表的延伸,如果前面的顺序表和链表你已经掌握了的话,栈和队列对你来说应该就是小菜一碟了。1、栈(1)栈的概念及结构栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(LastInFirstOut)的原则。压栈:栈的插入操作叫做进栈/压栈..

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

目录

1、栈

(1)栈的概念及结构

(2)栈的实现 

2、队列

(1)队列的概念及结构

(2)队列的实现 


前言:栈和队列是在顺序表和链表的延伸,如果前面的顺序表和链表你已经掌握了的话,栈和队列对你来说应该就是小菜一碟了。

1、栈

(1)栈的概念及结构

栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。

压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。

出栈:栈的删除操作叫做出栈。出数据也在栈顶。

栈和队列讲解_栈和队列的优缺点

(2)栈的实现 

栈的实现一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组尾上插入数据的代价比较小。

Stack.h

#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>

typedef char STDataType;

typedef struct Stack
{
	STDataType* a;
	int top;
	int capacity;
}SL;

//初始化
void StackInit(SL* ps);

//使用后销毁
void StackDestroy(SL* ps);

//入栈
void StackPush(SL* ps, STDataType x);

//出栈
void StackPop(SL* ps);

//判断栈空
bool StackEmpty(SL* ps);

//栈的大小
int StackSize(SL* ps);

//栈顶元素
STDataType StackTop(SL* ps);

Jetbrains全家桶1年46,售后保障稳定

Stack.c

#define _CRT_SECURE_NO_WARNINGS 1

#include "Stack.h"

//初始化
void StackInit(SL* ps)
{
	assert(ps);
	ps->a = NULL;
	ps->top = 0;
	ps->capacity = 0;
}

//使用后销毁
void StackDestroy(SL* ps)
{
	assert(ps);
	free(ps->a);
	ps->a = NULL;
	ps->top = ps->capacity = 0;
}

//入栈
void StackPush(SL* ps, STDataType x)
{
	assert(ps);

	//如果栈满增容
	if (ps->top == ps->capacity)
	{
		STDataType newcapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;
		STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * newcapacity);
		if (tmp == NULL)
		{
			printf("realloc fail\n");
			exit(-1);
		}
		else
		{
			ps->a = tmp;
			ps->capacity = newcapacity;
		}
	}
	ps->a[ps->top] = x;
	ps->top++;
}

//出栈
void StackPop(SL* ps)
{
	assert(ps);
	assert(ps->top > 0);

	ps->top--;
}

//判断栈空
bool StackEmpty(SL* ps)
{
	assert(ps);
	return (ps->top == 0);
}

//栈的大小
int StackSize(SL* ps)
{
	assert(ps);
	return ps->top;
}

//栈顶元素
STDataType StackTop(SL* ps)
{
	assert(ps);
	assert(ps->top > 0);

	return ps->a[ps->top-1];
}

test.c

#define _CRT_SECURE_NO_WARNINGS 1

#include "Stack.h"

//void test()
//{
//	SL st;
//
//	StackInit(&st);
//	StackPush(&st, 1);
//	StackPush(&st, 2);
//	//StackPush(&st, 3);
//	//StackPush(&st, 4);
//
//	printf("%d\n", StackTop(&st));
//
//	StackPop(&st);
//
//	StackPush(&st, 3);
//	StackPush(&st, 4);
//
//	while (!StackEmpty(&st))
//	{
//		printf("%d ", StackTop(&st));
//		StackPop(&st);
//	}
//	printf("\n");
//
//	StackDestroy(&st);
//
//}

bool isValid(char* s) {
    SL st;
    StackInit(&st);
    while (*s)
    {
        if (*s == '(' || *s == '{' || *s == '[')
        {
            StackPush(&st, *s);
            s++;
        }
        else
        {
            if (StackEmpty(&st))
                return false;
            char top = StackTop(&st);
            StackPop(&st);
            if ((*s == ')' && top != '(')
                || (*s == ']' && top != '[')
                || (*s == '}' && top != '{'))
            {
                StackDestroy(&st);
                return false;
            }
            else
            {
                s++;
            }
        }
    }
    //栈为空,说明左括号都匹配完了
    bool ret = StackEmpty(&st);
    StackDestroy(&st);
    return ret;
}

int main()
{
	//test();
    char a[] = { "{()}" };
    bool ret = isValid(a);
    printf("%d", ret);

	return 0;
}

2、队列

(1)队列的概念及结构

队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出FIFO(First In First Out)

入队列:进行插入操作的一端称为队尾

出队列:进行删除操作的一端称为队头

栈和队列讲解_栈和队列的优缺点

栈和队列讲解_栈和队列的优缺点 

(2)队列的实现 

Queue.h

#pragma once

#include<stdio.h>
#include<assert.h>
#include<stdbool.h>
#include<stdlib.h>

typedef int QDataType;

typedef struct QueueNode
{
	QDataType data;
	struct QueueNode* next;
}QNode;

typedef struct Queue
{
	QNode* head;
	QNode* tail;
}Queue;

//初始化
void QueueInit(Queue* pq);

//销毁
void QueueDestroy(Queue* pq);

//入队
void QueuePush(Queue* pq, QDataType x);

//出队
void QueuePop(Queue* pq);

//判断队空
bool QueueEmpty(Queue* pq);

//队的大小
size_t QueueSize(Queue* pq);

//队长
QDataType QueueFront(Queue* pq);

//队尾
QDataType QueueBack(Queue* pq);

Queue.c

#define _CRT_SECURE_NO_WARNINGS 1

#include "Queue.h"

//初始化
void QueueInit(Queue* pq)
{
	assert(pq);
	pq->head = pq->tail = NULL;
}

//销毁
void QueueDestroy(Queue* pq)
{
	assert(pq);
	QNode* cur = pq->head;

	while (cur)
	{
		QNode* next = cur->next;
		free(cur);
		cur = next;
	}
	pq->head = pq->tail = NULL;
}

//入队
void QueuePush(Queue* pq, QDataType x)
{
	assert(pq);
	QNode* newnode = (QNode*)malloc(sizeof(QNode));
	assert(newnode);
	newnode->data = x;
	newnode->next = NULL;

	if (pq->tail == NULL)
	{
		pq->head = pq->tail = newnode;
	}
	else
	{
		pq->tail->next = newnode;
		pq->tail = newnode;
	}
}

//出队
void QueuePop(Queue* pq)
{
	assert(pq);
	assert(pq->head && pq->tail);
	if (pq->head->next == NULL)
	{
		free(pq->head);
		pq->head = pq->tail = NULL;
	}
	else
	{
		QNode* next = pq->head->next;
		free(pq->head);
		pq->head = next;
	}
}

//判断队空
bool QueueEmpty(Queue* pq)
{
	assert(pq);
	//return (pq->head == NULL) && (pq->tail == NULL);
	return pq->head == NULL;
}

//队的大小
size_t QueueSize(Queue* pq)
{
	assert(pq);
	QDataType size = 0;

	QNode* cur = pq->head;
	while (cur)
	{
		size++;
		cur = cur->next;
	}
	return size;
}

//队长
QDataType QueueFront(Queue* pq)
{
	assert(pq);
	assert(pq->head);
	return pq->head->data;
}

//队尾
QDataType QueueBack(Queue* pq)
{
	assert(pq);
	assert(pq->tail);
	return pq->tail->data;
}

Test.c

#define _CRT_SECURE_NO_WARNINGS 1

#include "Queue.h"

void test()
{
	Queue q;
	QueueInit(&q);
	QueuePush(&q, 1);
	QueuePush(&q, 2);
	QueuePush(&q, 3);
	QueuePush(&q, 4);
	printf("%d\n", QueueFront(&q));
	printf("%d\n", QueueBack(&q));

	/*while (!QueueEmpty(&q))
	{
		printf("%d ", QueueFront(&q));
		QueuePop(&q);
	}
	printf("\n");*/

	QueuePop(&q);

	while (!QueueEmpty(&q))
	{
		printf("%d ", QueueFront(&q));
		QueuePop(&q);
	}
	printf("\n");

	QueueDestroy(&q);
}

int main()
{
	test();
	return 0;
}

栈和队列到此结束,若想再进一步,请关注下章讲解!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/226910.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 玩转“网上邻居”之浏览服务原理(二)

    玩转“网上邻居”之浏览服务原理(二)

    2021年7月23日
    58
  • 通过和resnet18和resnet50理解PyTorch的ResNet模块

    通过和resnet18和resnet50理解PyTorch的ResNet模块文章目录模型介绍resnet18模型流程总结resnet50总结resnet和resnext的框架基本相同的,这里先学习下resnet的构建,感觉高度模块化,很方便。本文算是对PyTorch源码解读之torchvision.modelsResNet代码的详细理解,另外,强烈推荐这位大神的PyTorch的教程!模型介绍resnet的模型可以直接通过torchvision导入,可以通过pretr…

    2022年5月26日
    87
  • iOS10 iPhone5 10.3.3每次越狱后要做的事「建议收藏」

    iOS10 iPhone5 10.3.3每次越狱后要做的事「建议收藏」由于经常没电关机,越狱失效,就需要经常再越狱。越狱后要:1.越狱设备安装“AFC2”补丁。https://www.i4.cn/news_detail_1623.html2.安装AppSynchttps://www.i4.cn/news_detail_13094.html3.openssh安装完不管用需要重启,再越狱,afc2更改—从新安装4.电脑命令行连接设备sshroot@192.168.199.110alpine5.Clutc…

    2022年6月12日
    41
  • 0x80表示什么_0x38是多少

    0x80表示什么_0x38是多少0x800x是C语言中16进制数的表示方法。0x80等于十进制的1280×80在计算机内部表示为10000000字符在计算机中以其ASCII码方式表示, 其长度为1个字节,有符号字符型数取值范围为-128~127,无符号字符型数到值范围是0~255。因此在TurboC语言中,字符型数据在操作时将按整型数处理,如果某个变量定义成char,则表明该变量是

    2022年9月13日
    0
  • python 字符串转成数字_python数字转十六进制字符串

    python 字符串转成数字_python数字转十六进制字符串在python列表操作中,面对需要把列表中的字符串转为礼拜的操作,无需强转,通过简单的几步就可以实现,本文介绍python中字符串转成数字的三种方法:1、使用join的方法;2、使用int函数将16进制字符串转化为10进制整数;3、使用列表生成式进行转换。方法一:使用join的方法num_list=[‘1′,’2′,’3’]str_list=”.join(num_str)#把列表中的元素连起来print(int(str_list))输出123方法二:使用int函数将16进制

    2022年8月31日
    0
  • PHP 正则表达式匹配函数 preg_match 与 preg_match_all

    PHP 正则表达式匹配函数 preg_match 与 preg_match_all

    2021年10月12日
    85

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号