深度置信网络(DBN)是由一系列的玻尔兹曼机(RBM)进行叠加组成的。
代码实现DBN的过程,请参考matlab的深度学习工具箱:DeepLearnToolbox 。
而关于深度置信网络的原理部分,请参考大神 peghoty的博客:http://blog.csdn.net/itplus/article/details/。
那么接下来就是自己利用deeplearntoolbox来编写自己的深度置信网络(DBN)了。
DBN函数,包含功能:初始化DBN参数,并进行训练DBN网络,之后将DBN扩展为NN,并对NN进行了相应的初始化,训练以及测试
function DBN(train_x,train_y,test_x,test_y) %单纯的DBN只是一个NN网络,它返回的是一个训练好的网络,而不是对测试样本的一个评估 %所以,在这个程序中,我们是没有看到输出的结果的 %要进行预测,必须要有逻辑回归或者softmax回归才行,因为,这样才能够对测试样本进行评估 %初始化参数,层数 x = double(train_x)/255; opts.numepochs = 1;%迭代次数 opts.batchsize = 100;%批次处理的大小 opts.momentum = 0;%动量(调整梯度) opts.learn_r = 1;%学习率 n = size(x,2);%输入的节点数 dbn.layers = [100 100];%隐层的层数以及节点数 dbn.layers = [n,dbn.layers];%输入层+隐层 %对每层的权重和偏置进行初始化 for u = 1:numel(dbn.layers)-1 %u表示隐层层数 dbn.rbm{u}.learn_r = opts.learn_r; dbn.rbm{u}.momentum = opts.momentum; dbn.rbm{u}.W = zeros(dbn.layers(u+1),dbn.layers(u));%784*100的权重矩阵 dbn.rbm{u}.vW = zeros(dbn.layers(u+1),dbn.layers(u));%更新参数用 dbn.rbm{u}.b = zeros(dbn.layers(u), 1);%b为可见层的偏置 dbn.rbm{u}.vb = zeros(dbn.layers(u), 1); dbn.rbm{u}.c = zeros(dbn.layers(u + 1), 1);%c为隐层的偏置 dbn.rbm{u}.vc = zeros(dbn.layers(u + 1), 1); end %初始化参数完毕 %训练 u = numel(dbn.rbm);%隐层的玻尔兹曼机数 dbn.rbm{1} = rbmtrain1(dbn.rbm{1},x,opts);%训练第一层rbm for i = 2:u P = repmat(dbn.rbm{i - 1}.c', size(x, 1), 1) + x * dbn.rbm{i - 1}.W'; x = 1./(1+exp(-P)); dbn.rbm{i} = rbmtrain1(dbn.rbm{i},x,opts); end figure; visualize(dbn.rbm{1}.W'); % Visualize the RBM weights %训练完毕,并打印特征图 %展开为nn,利用BP算法进行参数微调 outputsize = 10; %MNIS数据库,所以最后一层输出只能有10个 nn.layers = [dbn.layers,outputsize];%nn是DBN展开的,不过还需要其他的一些参数.nn的size表示层数 nn.n = numel(nn.layers); nn.activation_function = 'tanh_opt'; % 激活函数 nn.learningRate = 2; % 学习速率 nn.momentum = 0.5; % 动量,与梯度有关 nn.scaling_learningRate = 1; % Scaling factor for the learning rate (each epoch) nn.weightPenaltyL2 = 0; % L2 regularization nn.nonSparsityPenalty = 0; % Non sparsity penalty nn.sparsityTarget = 0.05; % Sparsity target nn.inputZeroMaskedFraction = 0; % Used for Denoising AutoEncoders nn.testing = 0; % Internal variable. nntest sets this to one. nn.output = 'sigm'; % 输出是线性、softmax、还是sigm? nn.dropoutFraction = 0; % Dropout level (http://www.cs.toronto.edu/~hinton/absps/dropout.pdf) for i = 2:nn.n nn.W{i - 1} = (rand(nn.layers(i),nn.layers(i-1)+1)-0.5)*2*4*sqrt(6/(nn.layers(i)+nn.layers(i-1))); %注意,这儿必须进行权重初始化,因为输出层的权重并没有设置,而且在后面会W会被DBN训练好的权重覆盖 nn.vW{i - 1} = zeros(size(nn.W{i - 1})); nn.p{i} = zeros(1,nn.layers(i));%该参数是用来进行稀疏的 end for i =1: numel(dbn.rbm)%利用了DBN调整的权重 nn.W{i} = [dbn.rbm{i}.c dbn.rbm{i}.W];%注意,我们已经将偏置和权重一块放入nn.W{i}中 end nn.activation_function = 'sigm'; %到此,DBN扩展为NN并且进行了初始化 %接着进行训练 x1 = double(train_x) / 255; test_x = double(test_x) / 255; y1 = double(train_y); test_y = double(test_y); nn = nntrain1(nn, x1, y1, opts); %训练完毕 %进行样本测试 labels = nnpredict1(nn,test_x); [dummy,expected] = max(test_y,[],2); bad = find(labels~= expected); er = numel(bad) / size(test_x,1); assert(er < 0.10, 'Too big error'); end
rbmtrain1函数:这个过程就是对DBN进行训练的过程,要注意的是,对DBN的训练仅仅只是让DBN进行特征学习,而这个过程DBN是无法进行决策,判断的,其训练过程中参数的更新主要依赖样本的变化,返回的是一个进过训练的网络(这个网络还没有输出)。
function rbm = rbmtrain1(rbm,x,opts) assert(isfloat(x),'x must be a float'); assert(all(x(:)>=0) && all(x(:)<=1),'all data in x must be in [0,1]'); m =size(x,1); %返回x的行数,即样本数量 numbatches = m/opts.batchsize;%每 batchsize个样本作为一组 assert(rem(numbatches,1)==0,'numbatches not int'); for i = 1:opts.numepochs seq = randperm(m);%seq 是1-m的随机数序列 err = 0 ;%误差 for l = 1:numbatches batch = x(seq((l-1)*opts.batchsize +1:l*opts.batchsize),:);%取x的100个样本 %下面的过程是进行GIBBS采样,也算是CD-k算法的实现 v1 = batch;%v1表示可见层的初始化,共100个样本 P1 = repmat(rbm.c', opts.batchsize, 1) + v1 * rbm.W'; h1 = double(1./(1+exp(-P1)) > rand(size(P1))); P2 = repmat(rbm.b', opts.batchsize, 1) + h1 * rbm.W; v2 = double(1./(1+exp(-P2)) > rand(size(P2))); P3 = repmat(rbm.c', opts.batchsize, 1) + v2 * rbm.W'; h2 = 1./(1+exp(-P3)); %参数的更新 c1 = h1' * v1; c2 = h2' * v2; rbm.vW = rbm.momentum * rbm.vW + rbm.learn_r * (c1 - c2) / opts.batchsize; rbm.vb = rbm.momentum * rbm.vb + rbm.learn_r * sum(v1 - v2)' / opts.batchsize; rbm.vc = rbm.momentum * rbm.vc + rbm.learn_r * sum(h1 - h2)' / opts.batchsize; rbm.W = rbm.W + rbm.vW; rbm.b = rbm.b + rbm.vb; rbm.c = rbm.c + rbm.vc; err = err + sum(sum((v1 - v2) .^ 2)) / opts.batchsize; end disp(['epoch ' num2str(i) '/' num2str(opts.numepochs) '. Average reconstruction error is: ' num2str(err / numbatches)]); end
nntrain1函数:主要包含了前馈传播,后向传播(BP算法实现),参数更新,以及性能评估等过程
function nn = nntrain1( nn, x, y, opts,val_x,val_y) assert(nargin == 4 || nargin == 6,'number of input arguments must be 4 or 6'); loss.train.e = [];%%保存的是对训练数据进行前向传递,根据得到的网络输出值计算损失,并保存 %在nneval那里有改变,loss.train.e(end + 1) = nn.L; loss.train.e_frac = []; %保存的是:对分类问题,用训练数据对网络进行测试, %首先用网络预测得到预测分类,用预测分类与实际标签进行对比,保存错分样本的个数 loss.val.e = [];%有关验证集 loss.val.e_frac = []; opts.validation = 0; if nargin == 6%nargin表示参数个数,4个或者6个(val_x,val_y是可选项) opts.validation =1; end fhandle = []; if isfield(opts,'plot') && opts.plot == 1 fhandle = figure(); end m = size(x,1); batchsize = opts.batchsize;%批次处理的数目 为100 numepochs = opts.numepochs;%迭代次数 为1 numbatches = m/batchsize;%批次处理的次数 assert(rem(numbatches,1) == 0,'numbatches must be int'); L = zeros(numepochs * numbatches,1);%L用来存储每个训练小批量的平方误差 n = 1;%n作为L的索引 for i=1:numepochs tic;% tic用来保存当前时间,而后使用toc来记录程序完成时间, %差值为二者之间程序运行的时间,单位:s seq = randperm(m); %每次选择一个batch进行训练,每次训练都讲更新网络参数和误差,由nnff,nnbp,nnapplygrads实现: for l = 1 : numbatches batch_x = x(seq((l-1) * batchsize +1 : l * batchsize),:); %每100个为一组进行处理 %添加噪声 if(nn.inputZeroMaskedFraction ~= 0)%nn参数设置中有,设置为0 batch_x = batch_x.*(rand(size(batch_x)) > nn.inputZeroMaskedFraction); end batch_y = y(seq((l-1) * batchsize +1 : l * batchsize),:); nn = nnff1(nn,batch_x,batch_y);%进行前向传播 nn = nnbp1(nn);%后向传播 nn = nnapplygrads1(nn);%进行梯度下降 L(n) = nn.L;%记录批次的损失,n作为下标 n = n+1; end t = toc; %用nneval和训练数据,评价网络性能 if opts.validation == 1 loss = nneval1(nn, loss, x, y, val_x, val_y); str_perf = sprintf('; Full-batch train mse = %f, val mse = %f', loss.train.e(end), loss.val.e(end)); else %在nneval函数里对网络进行评价,继续用训练数据,并得到错分的样本数和错分率,都存在了loss里 loss = nneval1(nn, loss, x, y); str_perf = sprintf('; Full-batch train err = %f', loss.train.e(end)); end %下面是画图函数 if ishandle(fhandle) nnupdatefigures1(nn, fhandle, loss, opts, i); end disp(['epoch ' num2str(i) '/' num2str(opts.numepochs) '. Took ' num2str(t) ' seconds' '. Mini-batch mean squared error on training set is ' num2str(mean(L((n-numbatches):(n-1)))) str_perf]); nn.learningRate = nn.learningRate * nn.scaling_learningRate; end end
nnff1函数:进行前馈传播,即就是有输入的数据进行计算隐层节点,输出节点的输出
function nn = nnff1( nn,x,y ) %前馈传播 n = nn.n;%网络层数 m = size(x,1);%样本个数:应该为100 x = [ones(m,1) x];%应该是100*785数组,第一列全为1,后784列为样本值 nn.a{1} = x;%nn.a{i}表示第i层的输出值,所以a{n}也就表示输出层的结果 for i = 2 :n-1 switch nn.activation_function case 'sigm' P = nn.a{i - 1} * nn.W{i - 1}';%注意:这儿已经把偏置计算进去了 %因为在前面展开的时候,将偏置放在了nn.W{i} = [dbn.rbm{i}.c dbn.rbm{i}.W];中 %并且对训练样本添加了一列,这一列就对应这偏置的计算 nn.a{i} = 1./(1+exp(-P)); case 'tanh_opt' P = nn.a{i - 1} * nn.W{i - 1}'; nn.a{i} = 1.7159*tanh(2/3.*P); end %dropout if(nn.dropoutFraction > 0) if(nn.testing) nn.a{i} = aa.a{i}.* (1 - nn.dropoutFraction); else nn.dropOutMask{i} = (rand(size(nn.a{i}))>nn.dropoutFraction); nn.a{i} = nn.a{i}.*nn.dropOutMask{i}; end end %计算使用稀疏性的指数级激活 if(nn.nonSparsityPenalty>0) nn.p{i} = 0.99 * nn.p{i} + 0.01 * mean(nn.a{i}, 1); end nn.a{i} = [ones(m,1) nn.a{i}]; end switch nn.output case 'sigm' P = nn.a{n - 1} * nn.W{n - 1}'; nn.a{n} = 1./(1+exp(-P)); case 'linear' nn.a{n} = nn.a{n-1} * nn.W{n-1}'; case 'softmax' nn.a{n} = nn.a{n - 1} * nn.W{n - 1}'; nn.a{n} = exp(bsxfun(@minus, nn.a{n}, max(nn.a{n},[],2))); nn.a{n} = bsxfun(@rdivide, nn.a{n}, sum(nn.a{n}, 2)); end %损失 nn.e= y-nn.a{n};%损失,差值 switch nn.output%除m是为了平均误差-也可以认为是单个样本的误差 case {'sigm','linear'} nn.L = 1/2 * sum(sum(nn.e .^2)) /m; case 'softmax' nn.L = -sum(sum(y .* log(nn.a{n}))) /m; end end
nnbp1函数:后向传播即就是BP算法的实现:
function nn= nnbp1( nn ) %进行后向传播算法 n = nn.n; sparsityError = 0; switch nn.output%本步骤表示输出层单个节点的差值(-(yi-ai)*f'(zi)),即就是BP第二步,第一步是前馈传播,计算各节点的输出值 case 'sigm' d{n} = -nn.e .*(nn.a{n} .* (1-nn.a{n})); case {'softmax','linear'} d{n} = -nn.e; end for i = (n-1):-1:2%d_act表示激活函数的导数 switch nn.activation_function case 'sigm' d_act = nn.a{i} .*(1-nn.a{i}); case 'tanh-opt' d_act = 1.7159 * 2/3 * (1 - 1/(1.7159)^2 * nn.a{i}.^2); end if(nn.nonSparsityPenalty>0)%稀疏时有用 pi = repmat(nn.p{i}, size(nn.a{i}, 1), 1); sparsityError = [zeros(size(nn.a{i},1),1) nn.nonSparsityPenalty * (-nn.sparsityTarget ./ pi + (1 - nn.sparsityTarget) ./ (1 - pi))]; end if i+1 == n%BP算法的第三步 d{i} = (d{i + 1} * nn.W{i} + sparsityError) .* d_act; else d{i} = (d{i + 1}(:,2:end) * nn.W{i} + sparsityError) .* d_act; %注意,在这儿第一列是偏置,所以要进行移除 end if(nn.dropoutFraction>0) d{i} = d{i} .* [ones(size(d{i},1),1) nn.dropOutMask{i}]; end end for i = 1 : (n-1)%由于每层的节点数是不一样的,所以需要用除以size(d{i])来求平均节点误差 if i+1 == n%dW表示的是梯度 nn.dW{i} = (d{i + 1}' * nn.a{i}) / size(d{i + 1}, 1); else nn.dW{i} = (d{i + 1}(:,2:end)' * nn.a{i}) / size(d{i + 1}, 1); end end end
nnapplygras1d函数:在BP算法后,进行参数的更新,该函数和nnbp1在整个DBN过程中可以认为是微调阶段
function nn = nnapplygrads1(nn) %更新参数的函数 for i=1:(nn.n-1)%的W本身包括偏置和权重 if(nn.weightPenaltyL2>0)%L2处罚用 dW = nn.dW{i} + nn.weightPenaltyL2 * [zeros(size(nn.W{i},1),1) nn.W{i}(:,2:end)]; else dW = nn.dW{i}; end dW = nn.learningRate * dW; if(nn.momentum > 0) nn.vW{i} = nn.momentum * nn.vW{i} + dW; dW = nn.vW{i}; end nn.W{i} = nn.W{i} - dW; end end
nneval1函数:实现性能的评估
function [ loss ] = nneval1(nn, loss, x, y, val_x, val_y) %评估网路性能 assert(nargin ==4 || nargin == 6,'Wrong number of argument'); nn.testing = 1; %训练性能 nn = nnff1(nn,x,y); loss.train.e(end+1) = nn.L; %验证性能 if nargin == 6 nn = nnff1(nn,val_x,val_y); loss.val.e(end+1) = nn.L; end nn.testing = 0; %错分类率 if strcmp(nn.output,'softmax') [er_train, dummy] = nntest(nn, train_x, train_y); loss.train.e_frac(end+1) = er_train; if nargin == 6 [er_val, dummy] = nntest(nn, val_x, val_y); loss.val.e_frac(end+1) = er_val; end end end
最后就是进行数据的测试
function labels = nnpredict1(nn,x) nn.testing = 1; nn = nnff1(nn, x, zeros(size(x,1), nn.layers(end))); nn.testing = 0; [dummy, i] = max(nn.a{end},[],2); labels = i; end
到此,整个代码的实现过程结束
代码运行结果:3层隐层,各100个节点,numepochs=1

2层隐层,各100 节点,numepochs=10:


总结:DBN在运行过程中只是进行特征学习,而无法进行决策,所以在进行DBN训练完成后,需要将DBN扩展为NN,即添加输出层(根据分类结果天天输出层的节点数)。然后,用训练好的DBN的参数初始化NN的参数,进而在进行传统的NN训练,就是进行前馈传播,后向传播等,这样的过程就是完成了DBN的预训练-微调过程。这样之后才可以进行判断,分类等。
发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/230586.html原文链接:https://javaforall.net
