Ubuntu安装显卡驱动教程

Ubuntu安装显卡驱动教程一 参考资料环境搭建 01 Ubuntu16 04 如何查看显卡信息及安装 NVDIA 显卡驱动二 环境配置系统 Ubuntu16 04 显卡 NVIDIAGeForc 4GB 三 准备工作 1 根据电脑显卡型号 下载对应显卡驱动下载链接 博主对应下载的驱动版本 NVIDIA Linux x86 64 470 57 02 run2 将显卡驱动放到 home yichao Downloads 目录四 关键步骤 1 查看显卡型号 驱动 查看显卡型号 ubuntu

一、参考资料

环境搭建01-Ubuntu16.04如何查看显卡信息及安装NVDIA显卡驱动

Linux安装NVIDIA显卡驱动的正确姿势

二、环境配置

系统:Ubuntu16.04 显卡:NVIDIA GeForce GTX 1650,4GB 

三、准备工作

1. 根据电脑显卡型号,下载对应显卡驱动 下载链接

# 博主对应下载的驱动版本 NVIDIA-Linux-x86_64-470.57.02.run 

在这里插入图片描述在这里插入图片描述
2. 将显卡驱动放到 /home/yichao/Downloads 目录

四、关键步骤

1. 查看显卡型号、驱动

# 查看显卡型号 ubuntu-drivers devices 

如果没有输出,继续下面的操作

2. 禁用nouveau

# (1)验证是否禁用 nouveau lsmod | grep nouveau # (2)若有输出,说明没有禁用,进行以下操作禁用 sudo gedit /etc/modprobe.d/blacklist.conf # (3)在文件末尾中添加两条: blacklist nouveau options nouveau modeset=0 # (4)更新配置 sudo update-initramfs -u # (5)重启系统 # (6)查看是否禁用 nouveau,若无输出,则已禁用 lsmod | grep nouveau 

3. nvidia驱动更新

# (1)添加ppa源 sudo add-apt-repository ppa:graphics-drivers/ppa #(2)更新apt-get sudo apt update # (3)查看更新后可以安装的显卡驱动版本 ubuntu-drivers devices # (4)安装推荐的显卡驱动 sudo apt-get install nvidia-430 

4. 安装nvidia显卡驱动

# 1. 将显卡驱动文件拷贝到 /home/yichao/Downloads 目录  # 1.1 按 CTRL + ALT + F1 键登录,从 GUI 转至终端tty1(TUI文本用户界面) # 1.2 输入自己的login(我的是yichao)和password # 2. 临时关闭图形界面 sudo service lightdm stop # 3. 删除已安装的显卡驱动 sudo apt-get remove --purge nvidia* sudo apt-get autoremove (加上才能卸载干净原驱动) # 4. 修改显卡驱动文件的权限 sudo chmod a+x NVIDIA-Linux-x86_64-396.18.run # 5. 安装显卡驱动 sudo ./NVIDIA-Linux-x86_64-470.57.02.run -no-x-check -no-nouveau-check -no-opengl-files 参数说明: 1) –no-x-check:表示安装驱动时不检查X服务,非必需,我们已经禁用图形界面。 2) –no-nouveau-check:表示安装驱动时不检查nouveau,非必需,我们已经禁用驱动。 3) –no-opengl-files:表示只安装驱动文件,不安装OpenGL文件。这个参数不可省略,否则会导致登陆界面死循环,英语一般称为”login loop”或者”stuck in login”。 # 5.1 安装过程中的选项 (1)The distribution-provided pre-install script failed! Are you sure you want to continue? 选择 yes 继续。 (2)Would you like to register the kernel module souces with DKMS? This will allow DKMS to automatically build a new module, if you install a different kernel later? 选择NO继续 (3)Would you like to run the nvidia-xconfigutility to automatically update your x configuration so that the NVIDIA x driver will be used when you restart x? Any pre-existing x confile will be backed up. 选择 Yes 继续 (4)Install 32-Bit compatibility libraries? 选择 No 继续 开始会显示大量点点(......),然后进入图形化安装界面: 如果提示是否接受(accept),选接受; 如果提示检测到xxx不完整,是否退出安装,选不退出(continue); 如果提示有旧驱动,询问是否删除旧驱动,选Yes; 如果提示缺少某某模块(modules),询问是否上网下载,选no; 如果提示编译模块,询问是否进行编译,选ok; 如果提示将要修改Xorg.conf,询问是否允许,选Yes; 这些选项如果选择错误可能会导致安装失败,没关系,只要前面不出错,多尝试几次就好。 # 6. 开启图形界面,没自动跳的话 crtl+alt+f7退回到GUI图形用户界面 sudo service lightdm start # 7. 若弹出设置对话框,亦表示驱动安装成功 nvidia-settings 

5. 查看已安装显卡驱动

nvidia-smi 

五、可能出现的问题

  • 缺少软链接
/sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn.so.8 is not a symbolic link /sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_train.so.8 is not a symbolic link /sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 is not a symbolic link /sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8 is not a symbolic link /sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8 is not a symbolic link /sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_train.so.8 is not a symbolic link /sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 is not a symbolic link 
解决办法: 创建软链接 sudo ln -sf /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.0.1 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_train.so.8 sudo ln -sf /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.0.1 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 sudo ln -sf /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.0.1 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8 sudo ln -sf /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.0.1 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8 sudo ln -sf /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.0.1 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_train.so.8 sudo ln -sf /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.0.1 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 
  • 测试cuDNN错误
# 进入mnistCUDNN目录 cd /usr/src/cudnn_samples_v7/mnistCUDNN # 编译mnistCUDNN sudo make 或者 sudo make -j8 
mnistCUDNN.cpp:538:53: error: ‘CUDNN_CONVOLUTION_FWD_PREFER_FASTEST’ was not declared in this scope CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, ^ error_util.h:66:9: note: in definition of macro ‘checkCUDNN’ if (status != CUDNN_STATUS_SUCCESS) { \ ^ mnistCUDNN.cpp:541:53: error: there are no arguments to ‘cudnnGetConvolutionForwardAlgorithm’ that depend on a template parameter, so a declaration of ‘cudnnGetConvolutionForwardAlgorithm’ must be available [-fpermissive] ) ); ^ error_util.h:66:9: note: in definition of macro ‘checkCUDNN’ if (status != CUDNN_STATUS_SUCCESS) { \ ^ mnistCUDNN.cpp:541:53: note: (if you use ‘-fpermissive’, G++ will accept your code, but allowing the use of an undeclared name is deprecated) ) ); ^ error_util.h:66:9: note: in definition of macro ‘checkCUDNN’ if (status != CUDNN_STATUS_SUCCESS) { \ ^ mnistCUDNN.cpp:541:53: error: there are no arguments to ‘cudnnGetConvolutionForwardAlgorithm’ that depend on a template parameter, so a declaration of ‘cudnnGetConvolutionForwardAlgorithm’ must be available [-fpermissive] ) ); ^ error_util.h:67:65: note: in definition of macro ‘checkCUDNN’ _error << "CUDNN failure\nError: " << cudnnGetErrorString(status); \ ^ mnistCUDNN.cpp: In instantiation of ‘void network_t<value_type>::convoluteForward(const Layer_t<value_type>&, int&, int&, int&, int&, value_type*, value_type) [with value_type = float]’: mnistCUDNN.cpp:739:25: required from ‘int network_t<value_type>::classify_example(const char*, const Layer_t<value_type>&, const Layer_t<value_type>&, const Layer_t<value_type>&, const Layer_t<value_type>&) [with value_type = float]’ mnistCUDNN.cpp:831:75: required from here mnistCUDNN.cpp:533:60: error: ‘cudnnGetConvolutionForwardAlgorithm’ was not declared in this scope checkCUDNN( cudnnGetConvolutionForwardAlgorithm(cudnnHandle, ^ error_util.h:66:9: note: in definition of macro ‘checkCUDNN’ if (status != CUDNN_STATUS_SUCCESS) { \ ^ mnistCUDNN.cpp:533:60: error: ‘cudnnGetConvolutionForwardAlgorithm’ was not declared in this scope, and no declarations were found by argument-dependent lookup at the point of instantiation [-fpermissive] checkCUDNN( cudnnGetConvolutionForwardAlgorithm(cudnnHandle, ^ error_util.h:67:65: note: in definition of macro ‘checkCUDNN’ _error << "CUDNN failure\nError: " << cudnnGetErrorString(status); \ ^ mnistCUDNN.cpp:533:60: note: ‘cudnnGetConvolutionForwardAlgorithm’ declared here, later in the translation unit checkCUDNN( cudnnGetConvolutionForwardAlgorithm(cudnnHandle, ^ error_util.h:66:9: note: in definition of macro ‘checkCUDNN’ if (status != CUDNN_STATUS_SUCCESS) { \ ^ mnistCUDNN.cpp: In instantiation of ‘void network_t<value_type>::convoluteForward(const Layer_t<value_type>&, int&, int&, int&, int&, value_type*, value_type) [with value_type = __half]’: mnistCUDNN.cpp:739:25: required from ‘int network_t<value_type>::classify_example(const char*, const Layer_t<value_type>&, const Layer_t<value_type>&, const Layer_t<value_type>&, const Layer_t<value_type>&) [with value_type = __half]’ mnistCUDNN.cpp:898:83: required from here mnistCUDNN.cpp:533:60: error: ‘cudnnGetConvolutionForwardAlgorithm’ was not declared in this scope checkCUDNN( cudnnGetConvolutionForwardAlgorithm(cudnnHandle, ^ error_util.h:66:9: note: in definition of macro ‘checkCUDNN’ if (status != CUDNN_STATUS_SUCCESS) { \ ^ mnistCUDNN.cpp:533:60: error: ‘cudnnGetConvolutionForwardAlgorithm’ was not declared in this scope, and no declarations were found by argument-dependent lookup at the point of instantiation [-fpermissive] checkCUDNN( cudnnGetConvolutionForwardAlgorithm(cudnnHandle, ^ error_util.h:67:65: note: in definition of macro ‘checkCUDNN’ _error << "CUDNN failure\nError: " << cudnnGetErrorString(status); \ ^ mnistCUDNN.cpp:533:60: note: ‘cudnnGetConvolutionForwardAlgorithm’ declared here, later in the translation unit checkCUDNN( cudnnGetConvolutionForwardAlgorithm(cudnnHandle, ^ error_util.h:66:9: note: in definition of macro ‘checkCUDNN’ if (status != CUDNN_STATUS_SUCCESS) { \ ^ Makefile:235: recipe for target 'mnistCUDNN.o' failed make: * [mnistCUDNN.o] Error 1 
Linking agains cublasLt = true CUDA VERSION: 11000 TARGET ARCH: x86_64 HOST_ARCH: x86_64 TARGET OS: linux SMS: 30 35 50 53 60 61 62 70 72 75 /usr/local/cuda/bin/nvcc -ccbin g++ -I/usr/local/cuda/include -I/usr/local/cuda/include -IFreeImage/include -m64 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_53,code=sm_53 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_62,code=sm_62 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_72,code=sm_72 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_75,code=compute_75 -o fp16_dev.o -c fp16_dev.cu nvcc fatal : Unsupported gpu architecture 'compute_30' Makefile:238: recipe for target 'fp16_dev.o' failed make: * [fp16_dev.o] Error 1 
解决办法: 修改Makefile文件 sudo gedit /home/yichao/MyDocuments/cudnn_samples_v7/mnistCUDNN/Makefile $(foreach sm,$(SMS),$(eval GENCODE_FLAGS += -gencode arch=compute_$(sm),code=sm_$(sm))) 修改为 GENCODE_FLAGS += -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_53,code=sm_53 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_62,code=sm_62 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_72,code=sm_72 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_75,code=compute_75 
参考资料 [](https://stackoverflow.com/questions//unsupported-gpu-architecture-compute-30-on-a-cuda-5-capable-gpu) [NVIDIA CUDA Toolkit 10.2.89](https://docs.nvidia.com/cuda/archive/10.2/pdf/CUDA_Toolkit_Release_Notes.pdf) 错误原因: CUDA 11.x no longer supports compute capability 3.0 CUDA11.x不再支持compute_30 解决办法: cd /usr/local/cuda-11.0/nvvm/libnvvm-samples/cuda-c-linking/CMakeLists.txt Makefile.config #>> nvcc -m64 -gencode=compute_20,code=sm_20 ... -dc math-funcs.cu -o math-funcs64.o add_custom_command(OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/math-funcs64.o" COMMAND ${NVCC} -m64 -gencode arch=compute_20,code=sm_20 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -dc "${CMAKE_CURRENT_SOURCE_DIR}/math-funcs.cu" -o "${CMAKE_CURRENT_BINARY_DIR}/math-funcs64.o" DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/math-funcs.cu" COMMENT "Building math-funcs64.o") 改为 #>> nvcc -m64 -gencode=compute_20,code=sm_20 ... -dc math-funcs.cu -o math-funcs64.o add_custom_command(OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/math-funcs64.o" COMMAND ${NVCC} -m64 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -dc "${CMAKE_CURRENT_SOURCE_DIR}/math-funcs.cu" -o "${CMAKE_CURRENT_BINARY_DIR}/math-funcs64.o" DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/math-funcs.cu" COMMENT "Building math-funcs64.o") 删除 -gencode=arch=compute_20,code=sm_20 -gencode=arch=compute_30,code=sm_30 
  • 测试cuDNN错误
Makefile:163: ../samples_common.mk: 没有那个文件或目录 CUDA VERSION: TARGET ARCH: x86_64 HOST_ARCH: x86_64 TARGET OS: linux SMS: >>> WARNING - no SM architectures have been specified - waiving sample <<< make: * No rule to make target '../samples_common.mk'。 停止。 
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/233845.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 如何利用Python画图

    如何利用Python画图一、问题描述对于刚刚学习编程的同学来说对编程是非常陌生的,对很多的代码也是非常陌生,高中忙于学习的我们甚至可以说是对编程是一无所知,进入大学进入到这个专业才开始接触很多电脑相关的东西才开始接触编程,下面我就教大家如何利用编程语言画图,以Python语言为例,我们这次利用Python画一个爱心。二、问题分析刚开始进入大学学习的我们,对于高中和大学教学方式的巨大转变一时间可能会有点适应不了导致我…

    2022年5月22日
    39
  • windows安装mysql connector/python

    windows安装mysql connector/python参考链接

    2022年7月15日
    12
  • 小米如何安装magisk和太极阳(纯小白篇)

    小米如何安装magisk和太极阳(纯小白篇)首先说明,我本人也是一个小白,很多专业术语和知识都不是特别了解。所以如果教程里有些许错误请见谅。我自己的手机是MI8,MIUI10.x.x.,在我安装msgisk的时候看了很多经验贴才下手的最后一次成功,但是网上并没有一篇完全适合小白的帖子,所以我这个小白就站出来了。好了,下面是正文,有关刷magisk的所有软件,下面都会在用到的地方给出。建议动手之前,先通看一遍本文,然后再按照本文操作。然后你会…

    2022年6月4日
    150
  • java多线程(二):synchronize和锁「建议收藏」

    java多线程(二):synchronize和锁「建议收藏」一、多线程情况下的线程安全问题先理解一个概念:线程安全:多个线程访问同一个对象时,如果不用考虑这些线程在运行时环境下的调度和交替执行,也不需要进行额外的同步,或者在调用方进行任何其他操作,调用这个

    2022年8月16日
    6
  • java分页计算当前页_java分页计算[通俗易懂]

    java分页计算当前页_java分页计算[通俗易懂]java仿google的分页算法1.现将数据从数据库读取出来封装一个java类中,在java类中计算publicclassPage{//成员变量//当前页privateintnowpage;//总记录数privateintcountrecord;//总页数privateintcountpage;//当前页记录开始的位置privateintpageindex;//每页显示的…

    2022年10月3日
    0
  • 趣味隐写术与密码术(现代密码学教程)

    实验吧密码学WriteUp三)

    2022年4月14日
    111

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号