深度学习–十折交叉验证

深度学习–十折交叉验证用scikit-learn来评价模型质量,为了更好地挑拣出结果的差异,采用了十折交叉验证(10-foldcrossvalidation)方法。本程序在输入层和第一个隐含层之间加入20%Dropout采用十折交叉验证的方法进行测试。#dropoutintheinputlayerwithweightconstraintdefcreate_mode…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

用scikit-learn来评价模型质量,为了更好地挑拣出结果的差异,采用了十折交叉验证(10-fold cross validation)方法。

本程序在输入层和第一个隐含层之间加入20%Dropout

采用十折交叉验证的方法进行测试。


    # dropout in the input layer with weight constraint
    def create_model1():
        # create model
        model = Sequential()
        model.add(Dropout(0.2, input_shape=(60,)))
        model.add(Dense(60, init='normal', activation='relu', W_constraint=maxnorm(3)))
        model.add(Dense(30, init='normal', activation='relu', W_constraint=maxnorm(3)))
        model.add(Dense(1, init='normal', activation='sigmoid'))
        # Compile model
        sgd = SGD(lr=0.1, momentum=0.9, decay=0.0, nesterov=False)
        model.compile(loss='binary_crossentropy', optimizer=sgd, metrics=['accuracy'])
        return model
 
    numpy.random.seed(seed)
    estimators = []
    estimators.append(('standardize', StandardScaler()))
    estimators.append(('mlp', KerasClassifier(build_fn=create_model1, nb_epoch=300, batch_size=16, verbose=0)))
    pipeline = Pipeline(estimators)
    kfold = StratifiedKFold(y=encoded_Y, n_folds=10, shuffle=True, random_state=seed)
    results = cross_val_score(pipeline, X, encoded_Y, cv=kfold)
    print("Accuracy: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))

Jetbrains全家桶1年46,售后保障稳定

Pineline

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
num_pipeline = Pipeline([
	('imputer', Imputer(strategy="median")),
	('attribs_adder', CombinedAttributesAdder()),
	('std_scaler', StandardScaler()),
])
housing_num_tr = num_pipeline.fit_transform(housing_num)

Pipeline构造器接受(name, transform) tuple的列表作为参数。按顺序执行列表中的transform,完成数据预处理

StratifiedKFold

StratifiedKFold用法类似Kfold,但是分层采样,确保训练集,测试集中各类别样本的比例与原始数据集中相同

sklearn.model_selection.StratifiedKFold(n_splits=3, shuffle=False, random_state=None) 

深度学习--十折交叉验证


import numpy as np 
from sklearn.model_selection import KFold,StratifiedKFold
 
X=np.array([
    [1,2,3,4],
    [11,12,13,14],
    [21,22,23,24],
    [31,32,33,34],
    [41,42,43,44],
    [51,52,53,54],
    [61,62,63,64],
    [71,72,73,74]
])
 
y=np.array([1,1,0,0,1,1,0,0])
floder = KFold(n_splits=4,random_state=0,shuffle=False)
sfolder = StratifiedKFold(n_splits=4,random_state=0,shuffle=False)
 
for train, test in sfolder.split(X,y):
    print('Train: %s | test: %s' % (train, test))
    print(" ")
 
for train, test in floder.split(X,y):
    print('Train: %s | test: %s' % (train, test))

#RESULT
Train: [1 3 4 5 6 7] | test: [0 2]
 
Train: [0 2 4 5 6 7] | test: [1 3]
 
Train: [0 1 2 3 5 7] | test: [4 6]
 
Train: [0 1 2 3 4 6] | test: [5 7]
 
Train: [2 3 4 5 6 7] | test: [0 1]
 
Train: [0 1 4 5 6 7] | test: [2 3]
 
Train: [0 1 2 3 6 7] | test: [4 5]
 
Train: [0 1 2 3 4 5] | test: [6 7]

cross_val_score:

不同的训练集、测试集分割的方法导致其准确率不同
交叉验证的基本思想是:将数据集进行一系列分割,生成一组不同的训练测试集,然后分别训练模型并计算测试准确率,最后对结果进行平均处理。这样来有效降低测试准确率的差异。

使用交叉验证的建议

  1. K=10是一个一般的建议

  2. 如果对于分类问题,应该使用分层抽样(stratified sampling)来生成数据,保证正负例的比例在训练集和测试集中的比例相同

from sklearn.cross_validation import cross_val_score
knn = KNeighborsClassifier(n_neighbors=5)
# 这里的cross_val_score将交叉验证的整个过程连接起来,不用再进行手动的分割数据
# cv参数用于规定将原始数据分成多少份
scores = cross_val_score(knn, X, y, cv=10, scoring='accuracy')
print(scores)
print(scores.mean())#输出结果平均值

参考网页:

https://blog.csdn.net/u010159842/article/details/54138157

cross_val_score交叉验证及其用于参数选择、模型选择、特征选择

https://blog.csdn.net/u012735708/article/details/82258615

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/234208.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 再谈单链表

    再谈单链表

    2021年9月12日
    44
  • mysql中Timestamp,time,datetime 区别

    mysql中Timestamp,time,datetime 区别原文地址:https://www.cnblogs.com/mxh1099/p/5461311.html一、TIMESTAMP[(M)]时间戳。范围是’1970-01-0100:00:00’到20

    2022年8月6日
    4
  • redisson连接池配置_redis连接池原理

    redisson连接池配置_redis连接池原理文章目录PreCode初始化槽计算无需手工调用close方法PreRedis进阶-Redis集群原理剖析及gossip协议初探集群原理部分简单的提了下Jest是如何实现RedisCluster的,这里我们再来梳理一下Codeimportredis.clients.jedis.HostAndPort;importredis.clients.jedis.JedisCl…

    2022年10月14日
    0
  • Python代码实现Excel转JSON

    Python代码实现Excel转JSON题记项目需求需要用到Excel转JSON,第一时间想到的就是尘封了将近一年的python,一直在JavaJava,python早忘光了,想立刻开始动手却又不敢,最后确认,用python来完成操作Excel有得天独厚的优势,只能硬着头皮上了。短短的代码,做了将近四个小时,中间复习了一下字典和列表,同时也因为其中遇到了一些奇奇怪怪的问题,凌晨一点多躺下,一身轻松。主要技术python3.8.6+字典/列表的运用+对Excel操作的库pandas其中python对Excel操作的库其实有很多,像我

    2022年6月1日
    40
  • 如何配置java环境变量_java环境变量怎么配置

    如何配置java环境变量_java环境变量怎么配置我们在学习java的时候,必须先来配置一下java的环境变量,也许你不懂什么是java环境变量,我们也不需要懂,你只要知道,java环境变量配置好了,你的电脑就能编译和运行java程序了,这显然是你想要的,好了,下面请跟我一起来做吧!1.首先,我们需要下载JDK安装包,你可以在www.sun.java.com上下载2.然后安装jdk,在安装的过程中选择【开发工具】,记住JDK安装位置。由于这个比较…

    2022年7月8日
    29
  • c酒店管理系统代码_酒店管理系统

    c酒店管理系统代码_酒店管理系统主要功能:1.添加员工信息2.显示员工信息3.删除员工信息4.修改员工信息5.查找员工信息6.员工信息排序7.清空数据(1)显示数据(2)修改数据(3)查找数据(4)信息排序部分代码展示:workerManager.cpp。需要完整代码可以留邮箱,有时间就发#include”stdafx.h”#include”work…

    2022年9月24日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号