一元线性回归方程公式_用普通最小二乘法估计经典线性模型

一元线性回归方程公式_用普通最小二乘法估计经典线性模型概述别看公式多,其实很简单最小二乘法其实又叫最小平方法,是一种数据拟合的优化技术。实质上是利用最小误差的平方寻求数据的最佳匹配函数,利用最小二乘法可以便捷的求得未知的数据,起到预测的作用,并且是的这些预测的数据与实际数据之间的误差平方和达到最小。一般应用在曲线拟合的目的上。原理本篇文章不考虑其他方面的应用,我们用最简单的实例说明最小二乘法的工作原理与其内在含义。当我们在研究两个…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

概述

别看公式多,其实很简单

最小二乘法其实又叫最小平方法,是一种数据拟合的优化技术。实质上是利用最小误差的平方寻求数据的最佳匹配函数,利用最小二乘法可以便捷的求得未知的数据,起到预测的作用,并且是的这些预测的数据与实际数据之间的误差平方和达到最小。一般应用在曲线拟合的目的上。

原理

本篇文章不考虑其他方面的应用,我们用最简单的实例说明最小二乘法的工作原理与其内在含义。

当我们在研究两个变量(x,y)之间的相互关系时,往往会有一系列的数据对[(x1,y1),(x2,y2)… (xm,ym)],那么将这些数据描绘到x-y直系坐标中若发现这些点都在一条直线附近时,那么初始令这条直线方程的表达式为

                                                                     \widehat{Y}_i=a_0+a_1x_i

其中 a_0,a_1 是任意的实数,现在需要让当 x 取值为 x_i 预测值 Y_i 与回归方程所预测的 \widehat{Y}_i 之间的差值平方最小,但是对于整个回归方程而言,就是所有预测值与实际值之间差值平方之和最小。

如果你要是问我,为什么要用预测值与真实值之间的差值。因为想要需要比较两个Y值,必须有个不变的因子那就是X,在同一个X下比较两种Y才有意义。如果你又问,为什么要平方,那是因为两个Y值之间做差值总会有正负的性质,而这是一个距离问题,是一个标量,所以平方。

故建立一下方程:

                                                            \sum _{i-1}^n(Y_i-\widehat{Y}_i) ^2= Q(a_0,a_1)

Q为关于预测方程中两个参数a_0,a_1的函数而已,此时将预测方程(有的人也叫拟合函数)带入以上公式得到以下方程:

                                                    \sum _{i-1}^n(Y_i-(a_0+a_1x_i)) ^2= Q(a_0,a_1)                                                      

要使的方程Q的取值最小,那么需要对函数Q分别对a_0,a_1求一阶偏导数,并且零偏导之后的值为0。即

                                                  \partial Q/\partial a_0=-2\sum _{i=1}^n(\widehat{Y}_i-a_0-a_1x_i)=0 

                                                \partial Q/\partial a_1=-2\sum _{i=1}^n(\widehat{Y}_i-a_0-a_1x_i)x_1=0

然后,郁闷了一波,为什么要等于0才行啊?哎!因为函数Q是一个进行平方擦操作了的,那么Q大致的曲线就是一个凹形曲线咯,当分别对两个变量求偏导之后等于零时Q肯定处于曲线的最低点,这样也满足了预测值与真实值距离最近的条件了。

接下来就需要对两个参数进行变换求解了,经过一顿移项变换操作之后得到两个参数a_0,a_1关于x和y的表达式。

                                                 a_1=\frac{n\sum_{i=1}^nx_iy_i-\sum _{i=1}^nx_i\sum _{i=1}^ny_i }{n\sum _{i=1}^nx_i^2-(\sum _{i=1}^nx_i)^2}

                                                          a_0=\frac{\sum _{i=1}^ny_i}{n}-a_1\frac{\sum _{i=1}^nx_i}{n}

我靠,敲得我头都晕了眼也花了,公式很难敲,关键是态度要到位。

实例应用

该例子数据引用于SPSS生活统计学。

某市欲对货运总量与工业总产值的数量关系进行研究,以便通过工业总产值预测货运总量。现将1991-2000年的数据,列入表中,根据这些数据建立回归方程。

货运总量   2.8 2.9 3.2 3.2 3.4 3.2 3.3 3.7 3.9 4.2

工业总值  25  27  29   32  34  36  35  39  42   45

首先观测这些数据是否具有某种直观上的特征,

一元线性回归方程公式_用普通最小二乘法估计经典线性模型

 由上图可以直接看出,x与y之间存在着大致的线性关系,所以权当两者就是线性关系。接下来我们计算我们需要用到的数据计算结果xy,x平方与y平方,详见下图。

一元线性回归方程公式_用普通最小二乘法估计经典线性模型

 将这些结果带入公式:

                                             a_1=\frac{n\sum_{i=1}^nx_iy_i-\sum _{i=1}^nx_i\sum _{i=1}^ny_i }{n\sum _{i=1}^nx_i^2-(\sum _{i=1}^nx_i)^2}\approx 0.06493

                                                     a_0=\frac{\sum _{i=1}^ny_i}{n}-a_1\frac{\sum _{i=1}^nx_i}{n}\approx 1.1464

那么线性回归的方程即为

                                                 \widehat{Y}_i=a_0+a_1X_i = 1.1644+0.06493X_i

顺便配个图:

一元线性回归方程公式_用普通最小二乘法估计经典线性模型

这样线性回归的方程就出来了。OK最小二乘法也说了(不是很深,也不是很广,因为自己很菜),例子应用也说了。那么本篇到此结束。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/234538.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 爬虫福利一 之 27报网MM

    爬虫福利一 之 27报网MM《爬虫福利二》点击:https://blog.csdn.net/PY0312刚学爬虫花了4个小时写的,每一步备注的都很清楚,喜欢的朋友自己可以研究研究……目标网站:https://www.27bao.com环境:Python3.x相关第三方模块:requests、lxmlRe:各位在测试时只需要打开终端,使用pythonxxx.py运行即可。源码如下…

    2022年6月22日
    80
  • 安装python应该先安装pycharm还是python_Pycharm及python安装详细步骤及PyCharm配置整理(推荐)…「建议收藏」

    安装python应该先安装pycharm还是python_Pycharm及python安装详细步骤及PyCharm配置整理(推荐)…「建议收藏」首先我们来安装python1、首先进入网站下载:点击打开链接(或自己输入网址:https://www.python.org/downloads/),进入之后如下图,选择图中红色圈中区域进行下载。2、下载完成后如下图所示3、双击exe文件进行安装,如下图,并按照圈中区域进行设置,切记要勾选打钩的框,然后再点击Customizeinstallation进入到下一步:4、对于上图中,可以通过Brow…

    2022年8月28日
    5
  • set example(buildingexamples)

    //Examplesforusingsocat(andfilan)//”$”meansnormaluser,”#”requiresprivileges,”//”startsacomment/////////////////////////////////////////////////////////////////////////////////si

    2022年4月17日
    68
  • 10款滑动门代码_jquery 滑动门_js滑动门_tab滑动门_jquery 选项卡_js选项卡_tab选项卡效果(三)

    10款滑动门代码_jquery 滑动门_js滑动门_tab滑动门_jquery 选项卡_js选项卡_tab选项卡效果(三)jquerytab选项卡插件滑动选项卡淡隐淡现选项卡jquerytab选项卡插件轻量级tab选项卡插件支持鼠标滑过、点击、自动切换、数据回调等功能jquery选项卡插件jquerytab选项卡支持垂直选项卡滚动、水平选项卡滚动、自动选项卡切换等。jquerytab选项卡ajax选项卡静态选项卡鼠标点击选项卡鼠标滑过选项卡jquery图片延迟加载插件制作tab选项卡图片异步加载…

    2025年6月5日
    2
  • NFV报告_nf检查具体怎么检查

    NFV报告_nf检查具体怎么检查1报告概述《2015年网络功能虚拟化(NFV)报告》将为读者提供关于NFV市场的发展趋势,以及目前取得进展等方面的观点。我们已经开始看到,在运营商,甚至在企业网上,越来越多的概念验证(POC)已经进行了尝试。因此目前非常重要的一件事情,就是认识到NFV对于整个网络产业所带来的巨大变化。NFV以软件的方式实现网络的功能,因此能够部署在虚拟环境,以及通用的标准硬件上。这能够满足运营商

    2025年9月1日
    9
  • 几种常用的矩阵范数表示_向量范数怎么求

    几种常用的矩阵范数表示_向量范数怎么求按道理讲,这些东西应该熟记于心的。但是自己真心不喜欢记这种东西,看到一个总结不错的博客,转载过来以便于自己查看把!原文1.几种范数矩阵X∈Rm×nX∈Rm×n,σi(X)σi(X)表示XX的第ii大奇异值(即XX′XX′的第ii大特征值的均方根){citerecht2010guaranteed}。rr表示矩阵XX的秩(R

    2022年9月16日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号