一套图 搞懂“时间复杂度”「建议收藏」

一套图 搞懂“时间复杂度”「建议收藏」一套图 搞懂“时间复杂度”

大家好,又见面了,我是你们的朋友全栈君。

写在前面:

 

这篇文章是在公众号: 程序员小灰 中发布的。是我到目前为止所看到的关于时间复杂度介绍的最好的文章,简介 清晰 明了。

所以拿来po出来 仅供学习交流,如侵则删。

 

现已将此文收录至: 《数据结构》C语言版 (清华严蔚敏考研版) 全书知识梳理


正文: 

 

 

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

 

640?wx_fmt=png

时间复杂度的意义

 

究竟什么是时间复杂度呢?让我们来想象一个场景:某一天,小灰和大黄同时加入了一个公司……

640?wx_fmt=jpeg

一天过后,小灰和大黄各自交付了代码,两端代码实现的功能都差不多。大黄的代码运行一次要花100毫秒,内存占用5MB。小灰的代码运行一次要花100秒,内存占用500MB。于是……

640?wx_fmt=jpeg

640?wx_fmt=jpeg

由此可见,衡量代码的好坏,包括两个非常重要的指标:

1.运行时间;

2.占用空间。

640?wx_fmt=jpeg

640?wx_fmt=jpeg

 

640?wx_fmt=png

基本操作执行次数

 

关于代码的基本操作执行次数,我们用四个生活中的场景,来做一下比喻:

场景1:给小灰一条长10寸的面包,小灰每3天吃掉1寸,那么吃掉整个面包需要几天?

640?wx_fmt=jpeg

答案自然是 3 X 10 = 30天。

如果面包的长度是 N 寸呢?

此时吃掉整个面包,需要 3 X n = 3n 天。

如果用一个函数来表达这个相对时间,可以记作 T(n) = 3n。

场景2:给小灰一条长16寸的面包,小灰每5天吃掉面包剩余长度的一半,第一次吃掉8寸,第二次吃掉4寸,第三次吃掉2寸……那么小灰把面包吃得只剩下1寸,需要多少天呢?

这个问题翻译一下,就是数字16不断地除以2,除几次以后的结果等于1?这里要涉及到数学当中的对数,以2位底,16的对数,可以简写为log16。

因此,把面包吃得只剩下1寸,需要 5 X log16 = 5 X 4 = 20 天。

如果面包的长度是 N 寸呢?

需要 5 X logn = 5logn天,记作 T(n) = 5logn。

场景3:给小灰一条长10寸的面包和一个鸡腿,小灰每2天吃掉一个鸡腿。那么小灰吃掉整个鸡腿需要多少天呢?

640?wx_fmt=jpeg

答案自然是2天。因为只说是吃掉鸡腿,和10寸的面包没有关系 。

如果面包的长度是 N 寸呢?

无论面包有多长,吃掉鸡腿的时间仍然是2天,记作 T(n) = 2。

场景4:给小灰一条长10寸的面包,小灰吃掉第一个一寸需要1天时间,吃掉第二个一寸需要2天时间,吃掉第三个一寸需要3天时间…..每多吃一寸,所花的时间也多一天。那么小灰吃掉整个面包需要多少天呢?

答案是从1累加到10的总和,也就是55天。

如果面包的长度是 N 寸呢?

此时吃掉整个面包,需要 1+2+3+……+ n-1 + n = (1+n)*n/2 = 0.5n^2 + 0.5n。

记作 T(n) = 0.5n^2 + 0.5n。

640?wx_fmt=jpeg

上面所讲的是吃东西所花费的相对时间,这一思想同样适用于对程序基本操作执行次数的统计。刚才的四个场景,分别对应了程序中最常见的四种执行方式:

场景1:T(n) = 3n,执行次数是线性的。

 
  1. void eat1(int n){

  2.     for(int i=0; i<n; i++){;

  3.         System.out.println("等待一天");

  4.         System.out.println("等待一天");

  5.         System.out.println("吃一寸面包");

  6.     }

  7. }

  8. vo

场景2:T(n) = 5logn,执行次数是对数的。

 
  1. void eat2(int n){

  2.    for(int i=1; i<n; i*=2){

  3.        System.out.println("等待一天");

  4.        System.out.println("等待一天");

  5.        System.out.println("等待一天");

  6.        System.out.println("等待一天");

  7.        System.out.println("吃一半面包");

  8.    }

  9. }

场景3:T(n) = 2,执行次数是常量的。

 
  1. void eat3(int n){

  2.    System.out.println("等待一天");

  3.    System.out.println("吃一个鸡腿");

  4. }

场景4:T(n) = 0.5n^2 + 0.5n,执行次数是一个多项式。

 
  1. void eat4(int n){

  2.    for(int i=0; i<n; i++){

  3.        for(int j=0; j<i; j++){

  4.            System.out.println("等待一天");

  5.        }

  6.        System.out.println("吃一寸面包");

  7.    }

  8. }

 

640?wx_fmt=png

渐进时间复杂度

 

有了基本操作执行次数的函数 T(n),是否就可以分析和比较一段代码的运行时间了呢?还是有一定的困难。

比如算法A的相对时间是T(n)= 100n,算法B的相对时间是T(n)= 5n^2,这两个到底谁的运行时间更长一些?这就要看n的取值了。

所以,这时候有了渐进时间复杂度(asymptotic time complectiy)的概念,官方的定义如下:

若存在函数 f(n),使得当n趋近于无穷大时,T(n)/ f(n)的极限值为不等于零的常数,则称 f(n)是T(n)的同数量级函数。

记作 T(n)= O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

渐进时间复杂度用大写O来表示,所以也被称为大O表示法。

640?wx_fmt=jpeg

640?wx_fmt=jpeg

如何推导出时间复杂度呢?有如下几个原则:

  1. 如果运行时间是常数量级,用常数1表示;

  2. 只保留时间函数中的最高阶项;

  3. 如果最高阶项存在,则省去最高阶项前面的系数。

让我们回头看看刚才的四个场景。

场景1:

T(n) = 3n 

最高阶项为3n,省去系数3,转化的时间复杂度为:

T(n) =  O(n)

640?wx_fmt=png

场景2:

T(n) = 5logn 

最高阶项为5logn,省去系数5,转化的时间复杂度为:

T(n) =  O(logn)

640?wx_fmt=png

场景3:

T(n) = 2

只有常数量级,转化的时间复杂度为:

T(n) =  O(1)

640?wx_fmt=png

场景4:

T(n) = 0.5n^2 + 0.5n

最高阶项为0.5n^2,省去系数0.5,转化的时间复杂度为:

T(n) =  O(n^2)

640?wx_fmt=png

这四种时间复杂度究竟谁用时更长,谁节省时间呢?稍微思考一下就可以得出结论:

O(1)< O(logn)< O(n)< O(n^2)

在编程的世界中有着各种各样的算法,除了上述的四个场景,还有许多不同形式的时间复杂度,比如:

O(nlogn), O(n^3), O(m*n),O(2^n),O(n!)

今后遨游在代码的海洋里,我们会陆续遇到上述时间复杂度的算法。

640?wx_fmt=png

 

640?wx_fmt=png

时间复杂度的巨大差异

 

 

640?wx_fmt=jpeg

640?wx_fmt=jpeg

我们来举过一个栗子:

算法A的相对时间规模是T(n)= 100n,时间复杂度是O(n)

算法B的相对时间规模是T(n)= 5n^2,时间复杂度是O(n^2)

算法A运行在小灰家里的老旧电脑上,算法B运行在某台超级计算机上,运行速度是老旧电脑的100倍。

那么,随着输入规模 n 的增长,两种算法谁运行更快呢?

640?wx_fmt=png

从表格中可以看出,当n的值很小的时候,算法A的运行用时要远大于算法B;当n的值达到1000左右,算法A和算法B的运行时间已经接近;当n的值越来越大,达到十万、百万时,算法A的优势开始显现,算法B则越来越慢,差距越来越明显。

这就是不同时间复杂度带来的差距。

640?wx_fmt=jpeg

转载于:https://my.oschina.net/jamesview/blog/3043654

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/106846.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 在国内怎么使用谷歌Chrome浏览器,为什么我的谷歌浏览器进去就加载失败

    在国内怎么使用谷歌Chrome浏览器,为什么我的谷歌浏览器进去就加载失败下面跟着我的步伐一起看看吧!一、当你如获至宝的在搜索框输入关键字然后按下回车,经过差不多一杯奶茶的时间加载,你看到了这张图妈耶!不会是我有下载错软件包了吧?我网掉了,没有啊?我设置不对啊?等等,你差不多猜对了,还真跟设置有点关系,我们要知道,正常情况下,国内是无法使用谷歌搜索的二、设置接着你打开设置找到搜索引擎,然后我们选择百度昂梵蒂冈这里我么输入www.baidu.com然后保存即可再次打开谷歌浏览器,这才像摸像样嘛…

    2022年7月14日
    33
  • python多线程tomorrow的使用

    python多线程tomorrow的使用安装pipinstalltomorrow使用:在需要多线程执行的方法上打上注解@threads(2)即可@threads(5)defmethod_001(i):print(i)if__name__==’__main__’:foriinrange(0,100):method_001(i)报错:async关键字冲突,这是python3才会报的错。解决:修改方法名…

    2025年5月23日
    0
  • JAVA – 虚函数、抽象函数、抽象类、接口

    JAVA – 虚函数、抽象函数、抽象类、接口1. Java虚函数虚函数的存在是为了多态。C++中普通成员函数加上virtual关键字就成为虚函数Java中其实没有虚函数的概念,它的普通函数就相当于C++的虚函数,动态绑定是Java的默认行为。如果Java中不希望某个函数具有虚函数特性,可以加上final关键字变成非虚函数PS: 其实C++和Java在虚函数的观点大同小异,异曲同工罢了。 2. Java抽象函数(纯虚函…

    2022年6月13日
    25
  • 两个服务通过http传输excel文件

    两个服务通过http传输excel文件两个服务通过http传输excel文件

    2022年4月24日
    71
  • python安装教程[通俗易懂]

    python安装教程[通俗易懂]python安装教程本章节我们将向大家介绍如何在本地搭建Python开发环境。Python可应用于多平台包括Linux和MacOSX。你可以通过终端窗口输入"python&

    2022年7月5日
    18
  • js文件上传的几种方式_java执行js文件

    js文件上传的几种方式_java执行js文件工作中用到了Ajax上传文件的情景之前自己不知道ajax可以传通过文档发现XHR2.0已经支持了但需要集合ForData目录结构test一级files二级index.html二级saveFiles.php二级示例(根据上传文件的进度生成进度条)代码如下HTML部分

    2025年7月4日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号