Linux中断 – 综述

Linux中断 – 综述

大家好,又见面了,我是全栈君。

一、前言

一个合格的linux驱动工程师需要对kernel中的中断子系统有深刻的理解,只有这样,在写具体driver的时候才能:

1、正确的使用linux kernel提供的的API,例如最著名的request_threaded_irq(request_irq)接口

2、正确使用同步机制保护驱动代码中的临界区

3、正确的使用kernel提供的softirq、tasklet、workqueue等机制来完成具体的中断处理

基于上面的原因,我希望能够通过一系列的文档来描述清楚linux kernel中的中断子系统方方面面的知识。一方面是整理自己的思绪,另外一方面,希望能够对其他的驱动工程师(或者想从事linux驱动工作的工程师)有所帮助。

 

二、中断系统相关硬件描述

中断硬件系统主要有三种器件参与,各个外设、中断控制器和CPU。各个外设提供irq request line,在发生中断事件的时候,通过irq request line上的电气信号向CPU系统请求处理。外设的irq request line太多,CPU需要一个小伙伴帮他,这就是Interrupt controller。Interrupt Controller是连接外设中断系统和CPU系统的桥梁。根据外设irq request line的多少,Interrupt Controller可以级联。CPU的主要功能是运算,因此CPU并不处理中断优先级,那是Interrupt controller的事情。对于CPU而言,一般有两种中断请求,例如:对于ARM,是IRQ和FIQ信号线,分别让ARM进入IRQ mode和FIQ mode。对于X86,有可屏蔽中断和不可屏蔽中断。

本章节不是描述具体的硬件,而是使用了HW block这样的概念。例如CPU HW block是只ARM core或者X86这样的实际硬件block的一个逻辑描述,实际中,可能是任何可能的CPU block。

 

1、HW中断系统的逻辑block图

我对HW中断系统之逻辑block diagram的理解如下图所示:

irq_thumb1

系统中有若干个CPU block用来接收中断事件并进行处理,若干个Interrupt controller形成树状的结构,汇集系统中所有外设的irq request line,并将中断事件分发给某一个CPU block进行处理。从接口层面看,主要有两类接口,一种是中断接口。有的实现中,具体中断接口的形态就是一个硬件的信号线,通过电平信号传递中断事件(ARM以及GIC组成的中断系统就是这么设计的)。有些系统采用了其他的方法来传递中断事件,比如x86+APIC(Advanced Programmable Interrupt Controller)组成的系统,每个x86的核有一个Local APIC,这些Local APIC们通过ICC(Interrupt Controller Communication)bus连接到IO APIC上。IO APIC收集各个外设的中断,并翻译成总线上的message,传递给某个CPU上的Local APIC。因此,上面的红色线条也是逻辑层面的中断信号,可能是实际的PCB上的铜线(或者SOC内部的铜线),也可能是一个message而已。除了中断接口,CPU和Interrupt Controller之间还需要有控制信息的交流。Interrupt Controller会开放一些寄存器让CPU访问、控制。

 

2、多个Interrupt controller和多个cpu之间的拓扑结构

Interrupt controller有的是支持多个CPU core的(例如GIC、APIC等),有的不支持(例如S3C2410的中断控制器,X86平台的PIC等)。如果硬件平台中只有一个GIC的话,那么通过控制该GIC的寄存器可以将所有的外设中断,分发给连接在该interrupt controller上的CPU。如果有多个GIC呢(或者级联的interrupt controller都支持multi cpu core)?假设我们要设计一个非常复杂的系统,系统中有8个CPU,有2000个外设中断要处理,这时候你如何设计系统中的interrupt controller?如果使用GIC的话,我们需要两个GIC(一个GIC最多支持1024个中断源),一个是root GIC,另外一个是secondary GIC。这时候,你有两种方案:

(1)把8个cpu都连接到root GIC上,secondary GIC不接CPU。这时候原本挂接在secondary GIC的外设中断会输出到某个cpu,现在,只能是(通过某个cpu interface的irq signal)输到root GIC的某个SPI上。对于软件而言,这是一个比较简单的设计,secondary GIC的cpu interface的设定是固定不变的,永远是从一个固定的CPU interface输出到root GIC。这种方案的坏处是:这时候secondary GIC的PPI和SGI都是没有用的了。此外,在这种设定下,所有连接在secondary GIC上的外设中断要送达的target CPU是统一处理的,要么送去cpu0,要么cpu 5,不能单独控制。

(2)当然,你也可以让每个GIC分别连接4个CPU core,root GIC连接CPU0~CPU3,secondary GIC连接CPU4~CPU7。这种状态下,连接在root GIC的中断可以由CPU0~CPU3分担处理,连接在secondary GIC的中断可以由CPU4~CPU7分担处理。但这样,在中断处理方面看起来就体现不出8核的威力了。

注:上一节中的逻辑block示意图采用的就是方案一。

3、Interrupt controller把中断事件送给哪个CPU?

毫无疑问,只有支持multi cpu core的中断控制器才有这种幸福的烦恼。一般而言,中断控制器可以把中断事件上报给一个CPU或者一组CPU(包括广播到所有的CPU上去)。对于外设类型的中断,当然是送到一个cpu上就OK了,我看不出来要把这样的中断送给多个CPU进行处理的必要性。如果送达了多个cpu,实际上,也应该只有一个handler实际和外设进行交互,另外一个cpu上的handler的动作应该是这样的:发现该irq number对应的中断已经被另外一个cpu处理了,直接退出handler,返回中断现场。IPI的中断不存在这个限制,IPI更像一个CPU之间通信的机制,对这种中断广播应该是毫无压力。

实际上,从用户的角度看,其需求是相当复杂的,我们的目标可能包括:

(1)让某个IRQ number的中断由某个特定的CPU处理

(2)让某个特定的中断由几个CPU轮流处理

……

当然,具体的需求可能更加复杂,但是如何区分软件和硬件的分工呢?让硬件处理那么复杂的策略其实是不合理的,复杂的逻辑如果由硬件实现,那么就意味着更多的晶体管,更多的功耗。因此,最普通的做法就是为Interrupt Controller支持的每一个中断设定一个target cpu的控制接口(当然应该是以寄存器形式出现,对于GIC,这个寄存器就是Interrupt processor target register)。系统有多个cpu,这个控制接口就有多少个bit,每个bit代表一个CPU。如果该bit设定为1,那么该interrupt就上报给该CPU,如果为0,则不上报给该CPU。这样的硬件逻辑比较简单,剩余的控制内容就交给软件好了。例如如果系统有两个cpu core,某中断想轮流由两个CPU处理。那么当CPU0相应该中断进入interrupt handler的时候,可以将Interrupt processor target register中本CPU对应的bit设定为0,另外一个CPU的bit设定为1。这样,在下次中断发生的时候,interupt controller就把中断送给了CPU1。对于CPU1而言,在执行该中断的handler的时候,将Interrupt processor target register中CPU0的bit为设置为1,disable本CPU的比特位,这样在下次中断发生的时候,interupt controller就把中断送给了CPU0。这样软件控制的结果就是实现了特定中断由2个CPU轮流处理的算法。

 

4、更多的思考

面对这个HW中断系统之逻辑block diagram,我们其实可以提出更多的问题:

(1)中断控制器发送给CPU的中断是否可以收回?重新分发给另外一个CPU?

(2)系统中的中断如何分发才能获得更好的性能呢?

(3)中断分发的策略需要考虑哪些因素呢?

……

很多问题其实我也没有答案,慢慢思考,慢慢逼近真相吧。

 

二、中断子系统相关的软件框架

linux kernel的中断子系统相关的软件框架图如下所示:

isbs 

由上面的block图,我们可知linux kernel的中断子系统分成4个部分:

(1)硬件无关的代码,我们称之Linux kernel通用中断处理模块。无论是哪种CPU,哪种controller,其中断处理的过程都有一些相同的内容,这些相同的内容被抽象出来,和HW无关。此外,各个外设的驱动代码中,也希望能用一个统一的接口实现irq相关的管理(不和具体的中断硬件系统以及CPU体系结构相关)这些“通用”的代码组成了linux kernel interrupt subsystem的核心部分。

(2)CPU architecture相关的中断处理。 和系统使用的具体的CPU architecture相关。

(3)Interrupt controller驱动代码 。和系统使用的Interrupt controller相关。

(4)普通外设的驱动。这些驱动将使用Linux kernel通用中断处理模块的API来实现自己的驱动逻辑。

转载于:https://www.cnblogs.com/alantu2018/p/8447462.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/107707.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 时序数据库 mysql_时序数据库 应用场景

    时序数据库 mysql_时序数据库 应用场景influxDB介绍时间序列数据是以时间字段为每行数据的标示,比如股票市场的价格,环境中的温度,主机的CPU使用率等。但是又有什么数据是不包含timestamp的呢?几乎所有的数据都可以打上一个timestamp字段。时间序列数据更重要的一个属性是如何去查询它。在查询的时候,对于时间序列我们总是会带上一个时间范围去过滤数据。同时查询的结果里也总是会包含timestamp字段。InfluxDB是一…

    2022年10月4日
    2
  • 亚太部分区域数据中心房地产情况报告

    亚太部分区域数据中心房地产情况报告

    2022年3月5日
    363
  • 磁珠的作用

    磁珠的作用磁珠的作用在成品电路板上,我们会看到一些导线或元件的引脚上套有黑色的小磁环,这就是本文要介绍的磁珠。磁珠的全称为铁氧体磁珠滤波器(另有一种是非晶合金磁性材料制作的磁珠),是一种抗干扰元件,滤除高频噪声

    2022年8月5日
    6
  • Spring Boot拦截器配置拦截登陆「建议收藏」

    Spring Boot拦截器配置拦截登陆「建议收藏」一,pom.xml的配置这里很简单,先引入spring-boot-starter-parent,parent是父模块,由父模块统一进行spring-boot版本管理,dependencies中与spring-boot启动绑定的包不需要再指定版本。<parent><groupId>org.springframework.boot<…

    2022年7月25日
    19
  • java实现四种常用排序算法

    java实现四种常用排序算法四种常用排序算法冒泡排序特点:效率低,实现简单思想(从小到大排):每一趟将待排序序列中最大元素移到最后,剩下的为新的待排序序列,重复上述步骤直到排完所有元素。这只是冒泡排序的一种,当然也可以从后往前排。publicvoidbubbleSort(intarray[]){intt=0;for(inti=0;i&amp;amp;lt;…

    2022年7月25日
    10
  • html自动写对联,HTML 实现网站对联广告位

    html自动写对联,HTML 实现网站对联广告位分享一个对联广告位的代码 网站通用 留着存放 哪天说不定用到了 html 代码 放到固定的位置 css 样式代码 index wall left width 350px height 528px position absolute top 120px margin left 366px background url https eimg smzdm com 201912 23 5e00

    2025年12月6日
    8

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号