面试题:八皇后问题(N皇后问题)「建议收藏」

面试题:八皇后问题(N皇后问题)

大家好,又见面了,我是全栈君。

前言

八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?这道题目也可以稍微延伸一下,变为 N×N的棋盘上放置N个皇后,其他条件相同。
下面介绍一种比较简单易懂的实现方式。

项目下载地址

正文

算法

先说一下算法, 这里使用的是一个改良版的广度优先搜索算法。在N×N的棋盘上,我们先在第一行的第一个位置放置下皇后,接着我们就不去管第一行了,因为第一行已经不能放置皇后了。我们在第二行找到所有的可以放置皇后的位置。同理我们现在可以不用去管前两行了。我们对于第二行的每一个可以放置皇后的位置,都在第三行继续寻找可以放置皇后的位置,如此往复,直到我们遍历到最后一行。这个时候我们就得到了一部分解,这些解是对于第一个皇后放置在第一行第一列的位置而言。接下来对于第一行第二列、第三列…所有列都进行这个步骤,就得到了所有的解。

代码

为了更加直观,我们模拟出一个N×N的棋盘。我们把每次放置一个皇后之后的局面称为一个状态(State)。下面是State类的代码:

import java.util.ArrayList;
import java.util.List;

public class State { 
     
    private List<Point> pointList = new ArrayList<Point>();
    private int lineNum;

    public List<Point> getPointList() {
        return pointList;
    }

    public int getLineNum(){
        return lineNum;
    }

    public void setLineNum(int lineNum){
        this.lineNum = lineNum;
    }

}

每个state对象有两个属性,pointList存放的是当前的state下已经放置的皇后坐标,lineNum是当前state所遍历到的行数。其中用到的Point类代码如下:

public class Point{ 
     
    private int X;
    private int Y;

    public Point(int x, int y){
        this.X = x;
        this.Y = y;
    }

    public int getX(){
        return this.X;
    }

    public int getY(){
        return this.Y;
    }

    public void setX(int x){
        this.X = x;
    }

    public void setY(int y){
        this.Y = y;
    }

}

每个Point对象有一个X坐标和一个Y坐标。
下面是主程序:

import java.util.ArrayList;
import java.util.List;
import java.util.Stack;

public class EightQueen { 
     
    //起始状态列表
    public static List<State> startStates = new ArrayList<State>();

    //棋盘的行列数和要放置的皇后数量
    public static final int lineNum = 4;

    //一个N×N的棋盘
    public static Point[][] allPoints = new Point[lineNum][lineNum];

    //解法数量
    public static int count = 0;

    public static void main(String[] args) {

        //初始化棋盘
        for(int i=0; i<lineNum; i++){
            for(int j=0; j<lineNum; j++){
                allPoints[i][j] = new Point(i, j);
            }
        }

        //初始化起始状态列表。每个State的PointList分别存放了第一行的8个坐标,并且设置第一行为遍历初始行
        for(int i=0; i<lineNum; i++){
            State state = new State();
            state.getPointList().add(new Point(0, i));
            state.setLineNum(0);
            startStates.add(state);
        }

        //对于初始化state列表中的每个state,进行遍历操作。
        for(State state : startStates){
            calculate(state);
        }
        System.out.println("总数为:" + count); 
    }

    public static void calculate(State state)
    {
        Stack<State> stack = new Stack<State>();
        stack.push(state);
        while(!stack.isEmpty()){
            //从stack里取出一个状态
            State state2 = stack.pop();
            //如果已经遍历到最后一行,输出这个解
            if(state2.getLineNum() == lineNum - 1){
                for(Point goalpoint : state2.getPointList()){
                    for(int i=0; i<lineNum; i++){
                        if(i!=goalpoint.getY())
                            System.out.print("_ ");
                        else
                            System.out.print("Q ");
                    }
                    System.out.println(); 
                }
                System.out.println();
                count++;
                continue;
            }

            //否则寻找下一行可以放置皇后的位置
            int currentLineNum = state2.getLineNum() + 1;
            for(Point point : allPoints[currentLineNum]){
                //如果该点可以放置皇后
                if(isSatisfied(point, state2.getPointList()))
                {
                    //创建一个state对象
                    State newState = new State();
                    //把这个新的state的pointList设置为前一个点的pointList里的所有点加上当前的点的坐标
                    for(Point point2 : state2.getPointList()){
                        newState.getPointList().add(new Point(point2.getX(), point2.getY()));
                    }
                    newState.getPointList().add(point);
                    //设置新的state的行数为下一行
                    newState.setLineNum(currentLineNum);
                    //入栈
                    stack.push(newState);
                }
            }
        }
    }

    //判断一个点是否可以放置皇后
    public static boolean isSatisfied(Point point, List<Point> list){
        for(Point point2 : list){
            //两个皇后不能再同一条横线、直线、斜线上。由于我们直接遍历的是下一行的点,所以肯定不会出现X坐标相同的情况
            if(point2.getY() == point.getY() 
                    || Math.abs(point2.getX() - point.getX()) == Math.abs(point2.getY() - point.getY()))
                return false;
        }
        return true;
    }

}

程序的输出为

_ Q _ _ 
_ _ _ Q 
Q _ _ _ 
_ _ Q _ 

_ _ Q _ 
Q _ _ _ 
_ _ _ Q 
_ Q _ _ 

总数为:2

如果我们更改lineNum为6,输出为

_ Q _ _ _ _ 
_ _ _ Q _ _ 
_ _ _ _ _ Q 
Q _ _ _ _ _ 
_ _ Q _ _ _ 
_ _ _ _ Q _ 

_ _ Q _ _ _ 
_ _ _ _ _ Q 
_ Q _ _ _ _ 
_ _ _ _ Q _ 
Q _ _ _ _ _ 
_ _ _ Q _ _ 

_ _ _ Q _ _ 
Q _ _ _ _ _ 
_ _ _ _ Q _ 
_ Q _ _ _ _ 
_ _ _ _ _ Q 
_ _ Q _ _ _ 

_ _ _ _ Q _ 
_ _ Q _ _ _ 
Q _ _ _ _ _ 
_ _ _ _ _ Q 
_ _ _ Q _ _ 
_ Q _ _ _ _ 

总数为:4

由于lineNum = 8的时候输出太长,这里不做展示。结果的数量为92种。
这里附上不同lineNum对应的解法数量:

lineNum     solution(lineNum)
1           1  
2           0  
3           0  
4           2  
5           10  
6           4  
7           40  
8           92  
9           352  
10          724  
11          2680  
12          14200  
13          73712  
14          365596  
15          2279184  
16          14772512  
17          95815104  
18          666090624  
19          4968057848 
20          39029188884  
21          314666222712  
22          2691008701644  
23          24233937684440  
24          227514171973736  
25          2207893435808352  

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/108336.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Java学习书籍推荐[通俗易懂]

    Java学习书籍推荐[通俗易懂]一、入门  《Java2从入门到精通》-推荐  《ThinkinginJava》-强烈推荐*  O’reilly的Java编程基础系列-参考*  二、进阶  《JavaCookBook》-非常推荐*(包含了Java编程的Tips,适合当做手册来查阅)  《O’reilly-JavaIO》-推荐*(包含JavaIO编程的各个方面)

    2022年6月19日
    30
  • MySQL练习题(经典50题)

    MySQL练习题(经典50题)MySQL练习题(经典50题)–建表–学生表CREATETABLEStudent(s_idVARCHAR(20),s_nameVARCHAR(20)NOTNULLDEFAULT‘’,s_birthVARCHAR(20)NOTNULLDEFAULT‘’,s_sexVARCHAR(10)NOTNULLDEFAULT‘’,PRIMARYKEY(s_id));–课程表CREATETABLECourse(c_idVARCHAR(20),c_nam

    2022年9月18日
    3
  • kong网关教程_网关怎么登陆

    kong网关教程_网关怎么登陆网关是微服务中不可或缺的一部分,它承载了所有请求流量入口,参数验证拦截,用户权限验证,但是除了JAVA的springcloud之外,公共网关屈指可数,其中最受关注的就是KONG了,笔者半年前就已经在使用kong的那时候使用的是0.11.2-bate版本(之前还被官方坑了一次),前不久终于等到了1.X的正式版发布了,笔者就在这里给大家分享一下kong网关的基本情况以及使用安装的方式。附上:喵…

    2025年10月20日
    2
  • AssertValid函数学习

    AssertValid函数学习转自http://tsitao.blog.163.com/blog/static/29795822006914105840496/VC的调试中,AssertValid和Dump函数的应用CObject

    2022年7月1日
    23
  • SSDP 协议_Smb协议

    SSDP 协议_Smb协议1.组播地址2.SSDP,简单服务发现技术组播地址为了让组播源和组播组成员进行通信,需要提供网络层组播地址,即IP组播地址。同时必须存在一种技术将IP组播地址映射为链路层的组播MAC地址。1.IP组播地址(1)       IPv4组播地址IANA(InternetAssignedNumbersAuthority,互联网编号分配委员会)将D类地址空间分配给IP

    2022年10月11日
    2
  • WinRAR 6.0 永久去除广告

    WinRAR 6.0 永久去除广告风吹起了从前,看着天边似在眼前,万般流连~

    2022年5月15日
    38

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号