验证码图片

验证码图片

http://www.oschina.net/code/snippet_616487_15391 原网址:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
package
com.coolinsoft.miaosha.util.ocr;
 
import
java.awt.Color;
import
java.awt.Graphics2D;
import
java.awt.color.ColorSpace;
import
java.awt.geom.AffineTransform;
import
java.awt.image.AffineTransformOp;
import
java.awt.image.BufferedImage;
import
java.awt.image.ColorConvertOp;
import
java.awt.image.ColorModel;
import
java.awt.image.MemoryImageSource;
import
java.awt.image.PixelGrabber;
import
java.util.HashMap;
import
java.util.Map;
 
public
class
ImageFilter {
    
private
BufferedImage image;
    
private
int
iw, ih;  
//图片宽度、高度
    
private
int
[] pixels;
//像素
 
    
public
ImageFilter(BufferedImage image) {
        
this
.image = image;
        
iw = image.getWidth();
        
ih = image.getHeight();
        
pixels =
new
int
[iw * ih];
    
}
 
    
/** 图像二值化 */
    
public
BufferedImage changeGrey() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
        
// 设定二值化的域值,默认值为100
        
int
grey =
150
;
        
// 对图像进行二值化处理,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
0
; i < iw * ih; i++) {
            
int
red, green, blue;
            
int
alpha = cm.getAlpha(pixels[i]);
            
if
(cm.getRed(pixels[i]) > grey) {
                
red =
255
;
            
}
else
{
                
red =
0
;
            
}
 
            
if
(cm.getGreen(pixels[i]) > grey) {
                
green =
255
;
            
}
else
{
                
green =
0
;
            
}
 
            
if
(cm.getBlue(pixels[i]) > grey) {
                
blue =
255
;
            
}
else
{
                
blue =
0
;
            
}
 
            
pixels[i] = alpha <<
24
| red <<
16
| green <<
8
| blue;
        
}
        
// 将数组中的象素产生一个图像
        
return
ImageIOHelper.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,pixels,
0
, iw));
    
}
 
    
/** 提升清晰度,进行锐化 */
    
public
BufferedImage sharp() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,
                
pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
 
        
// 象素的中间变量
        
int
tempPixels[] =
new
int
[iw * ih];
        
for
(
int
i =
0
; i < iw * ih; i++) {
            
tempPixels[i] = pixels[i];
        
}
        
// 对图像进行尖锐化处理,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
1
; i < ih -
1
; i++) {
            
for
(
int
j =
1
; j < iw -
1
; j++) {
                
int
alpha = cm.getAlpha(pixels[i * iw + j]);
 
                
// 对图像进行尖锐化
                
int
red6 = cm.getRed(pixels[i * iw + j +
1
]);
                
int
red5 = cm.getRed(pixels[i * iw + j]);
                
int
red8 = cm.getRed(pixels[(i +
1
) * iw + j]);
                
int
sharpRed = Math.abs(red6 - red5) + Math.abs(red8 - red5);
 
                
int
green5 = cm.getGreen(pixels[i * iw + j]);
                
int
green6 = cm.getGreen(pixels[i * iw + j +
1
]);
                
int
green8 = cm.getGreen(pixels[(i +
1
) * iw + j]);
                
int
sharpGreen = Math.abs(green6 - green5)
                        
+ Math.abs(green8 - green5);
 
                
int
blue5 = cm.getBlue(pixels[i * iw + j]);
                
int
blue6 = cm.getBlue(pixels[i * iw + j +
1
]);
                
int
blue8 = cm.getBlue(pixels[(i +
1
) * iw + j]);
                
int
sharpBlue = Math.abs(blue6 - blue5)
                        
+ Math.abs(blue8 - blue5);
 
                
if
(sharpRed >
255
) {
                    
sharpRed =
255
;
                
}
                
if
(sharpGreen >
255
) {
                    
sharpGreen =
255
;
                
}
                
if
(sharpBlue >
255
) {
                    
sharpBlue =
255
;
                
}
 
                
tempPixels[i * iw + j] = alpha <<
24
| sharpRed <<
16
                        
| sharpGreen <<
8
| sharpBlue;
            
}
        
}
 
        
// 将数组中的象素产生一个图像
        
return
ImageIOHelper
                
.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,
                        
tempPixels,
0
, iw));
    
}
     
     
     
     
     
     
 
 
    
public
static
int
isWhite(
int
colorInt) {
        
Color color =
new
Color(colorInt);
        
if
(color.getRed() + color.getGreen() + color.getBlue() >
600
) {
            
return
1
;
        
}
        
return
0
;
    
}
     
    
public 
BufferedImage removeBackgroud(){
        
BufferedImage img =
this
.image;
        
img = img.getSubimage(
1
,
1
, img.getWidth() -
2
, img.getHeight() -
2
);
        
int
width = img.getWidth();
        
int
height = img.getHeight();
        
double
subWidth = (
double
) width /
5.0
;
        
for
(
int
i =
0
; i <
5
; i++) {
            
Map<Integer, Integer> map =
new
HashMap<Integer, Integer>();
           
for
(
int
x = (
int
) (
1
+ i * subWidth); x < (i +
1
) * subWidth && x < width -
1
; ++x) {
              
for
(
int
y =
0
; y < height; ++y) {
                  
if
(isWhite(img.getRGB(x, y)) ==
1
)
                      
continue
;
                  
if
(map.containsKey(img.getRGB(x, y))) {
                      
map.put(img.getRGB(x, y), map.get(img.getRGB(x, y)) +
1
);
                  
}
else
{
                      
map.put(img.getRGB(x, y),
1
);
                  
}
              
}
           
}
           
int
max =
0
;
           
int
colorMax =
0
;
           
for
(Integer color : map.keySet()) {
                
if
(max < map.get(color)) {
                 
max = map.get(color);
                 
colorMax = color;
           
}
        
}
        
for
(
int
x = (
int
) (
1
+ i * subWidth); x < (i +
1
) * subWidth && x < width -
1
; ++x) {
            
for
(
int
y =
0
; y < height; ++y) {
                
if
(img.getRGB(x, y) != colorMax) {
                    
img.setRGB(x, y, Color.WHITE.getRGB());
                
}
else
{
                     
img.setRGB(x, y, Color.BLACK.getRGB());
                
}
            
}
        
}
      
}
       
return
img;
   
}
     
 
    
/** 中值滤波 */
    
public
BufferedImage median() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,
                
pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
        
// 对图像进行中值滤波,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
1
; i < ih -
1
; i++) {
            
for
(
int
j =
1
; j < iw -
1
; j++) {
                
int
red, green, blue;
                
int
alpha = cm.getAlpha(pixels[i * iw + j]);
 
                
//int red2 = cm.getRed(pixels[(i - 1) * iw + j]);
                
int
red4 = cm.getRed(pixels[i * iw + j -
1
]);
                
int
red5 = cm.getRed(pixels[i * iw + j]);
                
int
red6 = cm.getRed(pixels[i * iw + j +
1
]);
                
//int red8 = cm.getRed(pixels[(i + 1) * iw + j]);
 
                
// 水平方向进行中值滤波
                
if
(red4 >= red5) {
                    
if
(red5 >= red6) {
                        
red = red5;
                    
}
else
{
                        
if
(red4 >= red6) {
                            
red = red6;
                        
}
else
{
                            
red = red4;
                        
}
                    
}
                
}
else
{
                    
if
(red4 > red6) {
                        
red = red4;
                    
}
else
{
                        
if
(red5 > red6) {
                            
red = red6;
                        
}
else
{
                            
red = red5;
                        
}
                    
}
                
}
 
                
// int green2 = cm.getGreen(pixels[(i - 1) * iw + j]);
                
int
green4 = cm.getGreen(pixels[i * iw + j -
1
]);
                
int
green5 = cm.getGreen(pixels[i * iw + j]);
                
int
green6 = cm.getGreen(pixels[i * iw + j +
1
]);
                
// int green8 = cm.getGreen(pixels[(i + 1) * iw + j]);
 
                
// 水平方向进行中值滤波
                
if
(green4 >= green5) {
                    
if
(green5 >= green6) {
                        
green = green5;
                    
}
else
{
                        
if
(green4 >= green6) {
                            
green = green6;
                        
}
else
{
                            
green = green4;
                        
}
                    
}
                
}
else
{
                    
if
(green4 > green6) {
                        
green = green4;
                    
}
else
{
                        
if
(green5 > green6) {
                            
green = green6;
                        
}
else
{
                            
green = green5;
                        
}
                    
}
                
}
 
                
// int blue2 = cm.getBlue(pixels[(i - 1) * iw + j]);
                
int
blue4 = cm.getBlue(pixels[i * iw + j -
1
]);
                
int
blue5 = cm.getBlue(pixels[i * iw + j]);
                
int
blue6 = cm.getBlue(pixels[i * iw + j +
1
]);
                
// int blue8 = cm.getBlue(pixels[(i + 1) * iw + j]);
 
                
// 水平方向进行中值滤波
                
if
(blue4 >= blue5) {
                    
if
(blue5 >= blue6) {
                        
blue = blue5;
                    
}
else
{
                        
if
(blue4 >= blue6) {
                            
blue = blue6;
                        
}
else
{
                            
blue = blue4;
                        
}
                    
}
                
}
else
{
                    
if
(blue4 > blue6) {
                        
blue = blue4;
                    
}
else
{
                        
if
(blue5 > blue6) {
                            
blue = blue6;
                        
}
else
{
                            
blue = blue5;
                        
}
                    
}
                
}
                
pixels[i * iw + j] = alpha <<
24
| red <<
16
| green <<
8
                        
| blue;
            
}
        
}
 
        
// 将数组中的象素产生一个图像
        
return
ImageIOHelper
                
.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,
                        
pixels,
0
, iw));
    
}
 
    
/** 线性灰度变换 */
    
public
BufferedImage lineGrey() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,
                
pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
        
// 对图像进行进行线性拉伸,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
0
; i < iw * ih; i++) {
            
int
alpha = cm.getAlpha(pixels[i]);
            
int
red = cm.getRed(pixels[i]);
            
int
green = cm.getGreen(pixels[i]);
            
int
blue = cm.getBlue(pixels[i]);
 
            
// 增加了图像的亮度
            
red = (
int
) (
1.1
* red +
30
);
            
green = (
int
) (
1.1
* green +
30
);
            
blue = (
int
) (
1.1
* blue +
30
);
            
if
(red >=
255
) {
                
red =
255
;
            
}
            
if
(green >=
255
) {
                
green =
255
;
            
}
            
if
(blue >=
255
) {
                
blue =
255
;
            
}
            
pixels[i] = alpha <<
24
| red <<
16
| green <<
8
| blue;
        
}
 
        
// 将数组中的象素产生一个图像
 
        
return
ImageIOHelper
                
.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,
                        
pixels,
0
, iw));
    
}
 
    
/** 转换为黑白灰度图 */
    
public
BufferedImage grayFilter() {
        
ColorSpace cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);
        
ColorConvertOp op =
new
ColorConvertOp(cs,
null
);
        
return
op.filter(image,
null
);
    
}
 
    
/** 平滑缩放 */
    
public
BufferedImage scaling(
double
s) {
        
AffineTransform tx =
new
AffineTransform();
        
tx.scale(s, s);
        
AffineTransformOp op =
new
AffineTransformOp(tx,
                
AffineTransformOp.TYPE_BILINEAR);
        
return
op.filter(image,
null
);
    
}
 
    
public
BufferedImage scale(Float s) {
        
int
srcW = image.getWidth();
        
int
srcH = image.getHeight();
        
int
newW = Math.round(srcW * s);
        
int
newH = Math.round(srcH * s);
        
// 先做水平方向上的伸缩变换
        
BufferedImage tmp =
new
BufferedImage(newW, newH, image.getType());
        
Graphics2D g = tmp.createGraphics();
        
for
(
int
x =
0
; x < newW; x++) {
            
g.setClip(x,
0
,
1
, srcH);
            
// 按比例放缩
            
g.drawImage(image, x - x * srcW / newW,
0
,
null
);
        
}
 
        
// 再做垂直方向上的伸缩变换
        
BufferedImage dst =
new
BufferedImage(newW, newH, image.getType());
        
g = dst.createGraphics();
        
for
(
int
y =
0
; y < newH; y++) {
            
g.setClip(
0
, y, newW,
1
);
            
// 按比例放缩
            
g.drawImage(tmp,
0
, y - y * srcH / newH,
null
);
        
}
        
return
dst;
    
}
 
}

代码]将验证码抽取下来之后 零食存在本地 惊进行解析     跳至 [1] [全屏预览]

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
package
com.coolinsoft.miaosha.util.ocr;
 
import
java.awt.Color;
import
java.awt.Graphics2D;
import
java.awt.color.ColorSpace;
import
java.awt.geom.AffineTransform;
import
java.awt.image.AffineTransformOp;
import
java.awt.image.BufferedImage;
import
java.awt.image.ColorConvertOp;
import
java.awt.image.ColorModel;
import
java.awt.image.MemoryImageSource;
import
java.awt.image.PixelGrabber;
import
java.util.HashMap;
import
java.util.Map;
 
public
class
ImageFilter {
    
private
BufferedImage image;
    
private
int
iw, ih;  
//图片宽度、高度
    
private
int
[] pixels;
//像素
 
    
public
ImageFilter(BufferedImage image) {
        
this
.image = image;
        
iw = image.getWidth();
        
ih = image.getHeight();
        
pixels =
new
int
[iw * ih];
    
}
 
    
/** 图像二值化 */
    
public
BufferedImage changeGrey() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
        
// 设定二值化的域值,默认值为100
        
int
grey =
150
;
        
// 对图像进行二值化处理,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
0
; i < iw * ih; i++) {
            
int
red, green, blue;
            
int
alpha = cm.getAlpha(pixels[i]);
            
if
(cm.getRed(pixels[i]) > grey) {
                
red =
255
;
            
}
else
{
                
red =
0
;
            
}
 
            
if
(cm.getGreen(pixels[i]) > grey) {
                
green =
255
;
            
}
else
{
                
green =
0
;
            
}
 
            
if
(cm.getBlue(pixels[i]) > grey) {
                
blue =
255
;
            
}
else
{
                
blue =
0
;
            
}
 
            
pixels[i] = alpha <<
24
| red <<
16
| green <<
8
| blue;
        
}
        
// 将数组中的象素产生一个图像
        
return
ImageIOHelper.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,pixels,
0
, iw));
    
}
 
    
/** 提升清晰度,进行锐化 */
    
public
BufferedImage sharp() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,
                
pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
 
        
// 象素的中间变量
        
int
tempPixels[] =
new
int
[iw * ih];
        
for
(
int
i =
0
; i < iw * ih; i++) {
            
tempPixels[i] = pixels[i];
        
}
        
// 对图像进行尖锐化处理,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
1
; i < ih -
1
; i++) {
            
for
(
int
j =
1
; j < iw -
1
; j++) {
                
int
alpha = cm.getAlpha(pixels[i * iw + j]);
 
                
// 对图像进行尖锐化
                
int
red6 = cm.getRed(pixels[i * iw + j +
1
]);
                
int
red5 = cm.getRed(pixels[i * iw + j]);
                
int
red8 = cm.getRed(pixels[(i +
1
) * iw + j]);
                
int
sharpRed = Math.abs(red6 - red5) + Math.abs(red8 - red5);
 
                
int
green5 = cm.getGreen(pixels[i * iw + j]);
                
int
green6 = cm.getGreen(pixels[i * iw + j +
1
]);
                
int
green8 = cm.getGreen(pixels[(i +
1
) * iw + j]);
                
int
sharpGreen = Math.abs(green6 - green5)
                        
+ Math.abs(green8 - green5);
 
                
int
blue5 = cm.getBlue(pixels[i * iw + j]);
                
int
blue6 = cm.getBlue(pixels[i * iw + j +
1
]);
                
int
blue8 = cm.getBlue(pixels[(i +
1
) * iw + j]);
                
int
sharpBlue = Math.abs(blue6 - blue5)
                        
+ Math.abs(blue8 - blue5);
 
                
if
(sharpRed >
255
) {
                    
sharpRed =
255
;
                
}
                
if
(sharpGreen >
255
) {
                    
sharpGreen =
255
;
                
}
                
if
(sharpBlue >
255
) {
                    
sharpBlue =
255
;
                
}
 
                
tempPixels[i * iw + j] = alpha <<
24
| sharpRed <<
16
                        
| sharpGreen <<
8
| sharpBlue;
            
}
        
}
 
        
// 将数组中的象素产生一个图像
        
return
ImageIOHelper
                
.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,
                        
tempPixels,
0
, iw));
    
}
     
     
     
     
     
     
 
 
    
public
static
int
isWhite(
int
colorInt) {
        
Color color =
new
Color(colorInt);
        
if
(color.getRed() + color.getGreen() + color.getBlue() >
600
) {
            
return
1
;
        
}
        
return
0
;
    
}
     
    
public 
BufferedImage removeBackgroud(){
        
BufferedImage img =
this
.image;
        
img = img.getSubimage(
1
,
1
, img.getWidth() -
2
, img.getHeight() -
2
);
        
int
width = img.getWidth();
        
int
height = img.getHeight();
        
double
subWidth = (
double
) width /
5.0
;
        
for
(
int
i =
0
; i <
5
; i++) {
            
Map<Integer, Integer> map =
new
HashMap<Integer, Integer>();
           
for
(
int
x = (
int
) (
1
+ i * subWidth); x < (i +
1
) * subWidth && x < width -
1
; ++x) {
              
for
(
int
y =
0
; y < height; ++y) {
                  
if
(isWhite(img.getRGB(x, y)) ==
1
)
                      
continue
;
                  
if
(map.containsKey(img.getRGB(x, y))) {
                      
map.put(img.getRGB(x, y), map.get(img.getRGB(x, y)) +
1
);
                  
}
else
{
                      
map.put(img.getRGB(x, y),
1
);
                  
}
              
}
           
}
           
int
max =
0
;
           
int
colorMax =
0
;
           
for
(Integer color : map.keySet()) {
                
if
(max < map.get(color)) {
                 
max = map.get(color);
                 
colorMax = color;
           
}
        
}
        
for
(
int
x = (
int
) (
1
+ i * subWidth); x < (i +
1
) * subWidth && x < width -
1
; ++x) {
            
for
(
int
y =
0
; y < height; ++y) {
                
if
(img.getRGB(x, y) != colorMax) {
                    
img.setRGB(x, y, Color.WHITE.getRGB());
                
}
else
{
                     
img.setRGB(x, y, Color.BLACK.getRGB());
                
}
            
}
        
}
      
}
       
return
img;
   
}
     
 
    
/** 中值滤波 */
    
public
BufferedImage median() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,
                
pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
        
// 对图像进行中值滤波,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
1
; i < ih -
1
; i++) {
            
for
(
int
j =
1
; j < iw -
1
; j++) {
                
int
red, green, blue;
                
int
alpha = cm.getAlpha(pixels[i * iw + j]);
 
                
//int red2 = cm.getRed(pixels[(i - 1) * iw + j]);
                
int
red4 = cm.getRed(pixels[i * iw + j -
1
]);
                
int
red5 = cm.getRed(pixels[i * iw + j]);
                
int
red6 = cm.getRed(pixels[i * iw + j +
1
]);
                
//int red8 = cm.getRed(pixels[(i + 1) * iw + j]);
 
                
// 水平方向进行中值滤波
                
if
(red4 >= red5) {
                    
if
(red5 >= red6) {
                        
red = red5;
                    
}
else
{
                        
if
(red4 >= red6) {
                            
red = red6;
                        
}
else
{
                            
red = red4;
                        
}
                    
}
                
}
else
{
                    
if
(red4 > red6) {
                        
red = red4;
                    
}
else
{
                        
if
(red5 > red6) {
                            
red = red6;
                        
}
else
{
                            
red = red5;
                        
}
                    
}
                
}
 
                
// int green2 = cm.getGreen(pixels[(i - 1) * iw + j]);
                
int
green4 = cm.getGreen(pixels[i * iw + j -
1
]);
                
int
green5 = cm.getGreen(pixels[i * iw + j]);
                
int
green6 = cm.getGreen(pixels[i * iw + j +
1
]);
                
// int green8 = cm.getGreen(pixels[(i + 1) * iw + j]);
 
                
// 水平方向进行中值滤波
                
if
(green4 >= green5) {
                    
if
(green5 >= green6) {
                        
green = green5;
                    
}
else
{
                        
if
(green4 >= green6) {
                            
green = green6;
                        
}
else
{
                            
green = green4;
                        
}
                    
}
                
}
else
{
                    
if
(green4 > green6) {
                        
green = green4;
                    
}
else
{
                        
if
(green5 > green6) {
                            
green = green6;
                        
}
else
{
                            
green = green5;
                        
}
                    
}
                
}
 
                
// int blue2 = cm.getBlue(pixels[(i - 1) * iw + j]);
                
int
blue4 = cm.getBlue(pixels[i * iw + j -
1
]);
                
int
blue5 = cm.getBlue(pixels[i * iw + j]);
                
int
blue6 = cm.getBlue(pixels[i * iw + j +
1
]);
                
// int blue8 = cm.getBlue(pixels[(i + 1) * iw + j]);
 
                
// 水平方向进行中值滤波
                
if
(blue4 >= blue5) {
                    
if
(blue5 >= blue6) {
                        
blue = blue5;
                    
}
else
{
                        
if
(blue4 >= blue6) {
                            
blue = blue6;
                        
}
else
{
                            
blue = blue4;
                        
}
                    
}
                
}
else
{
                    
if
(blue4 > blue6) {
                        
blue = blue4;
                    
}
else
{
                        
if
(blue5 > blue6) {
                            
blue = blue6;
                        
}
else
{
                            
blue = blue5;
                        
}
                    
}
                
}
                
pixels[i * iw + j] = alpha <<
24
| red <<
16
| green <<
8
                        
| blue;
            
}
        
}
 
        
// 将数组中的象素产生一个图像
        
return
ImageIOHelper
                
.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,
                        
pixels,
0
, iw));
    
}
 
    
/** 线性灰度变换 */
    
public
BufferedImage lineGrey() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,
                
pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
        
// 对图像进行进行线性拉伸,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
0
; i < iw * ih; i++) {
            
int
alpha = cm.getAlpha(pixels[i]);
            
int
red = cm.getRed(pixels[i]);
            
int
green = cm.getGreen(pixels[i]);
            
int
blue = cm.getBlue(pixels[i]);
 
            
// 增加了图像的亮度
            
red = (
int
) (
1.1
* red +
30
);
            
green = (
int
) (
1.1
* green +
30
);
            
blue = (
int
) (
1.1
* blue +
30
);
            
if
(red >=
255
) {
                
red =
255
;
            
}
            
if
(green >=
255
) {
                
green =
255
;
            
}
            
if
(blue >=
255
) {
                
blue =
255
;
            
}
            
pixels[i] = alpha <<
24
| red <<
16
| green <<
8
| blue;
        
}
 
        
// 将数组中的象素产生一个图像
 
        
return
ImageIOHelper
                
.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,
                        
pixels,
0
, iw));
    
}
 
    
/** 转换为黑白灰度图 */
    
public
BufferedImage grayFilter() {
        
ColorSpace cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);
        
ColorConvertOp op =
new
ColorConvertOp(cs,
null
);
        
return
op.filter(image,
null
);
    
}
 
    
/** 平滑缩放 */
    
public
BufferedImage scaling(
double
s) {
        
AffineTransform tx =
new
AffineTransform();
        
tx.scale(s, s);
        
AffineTransformOp op =
new
AffineTransformOp(tx,
                
AffineTransformOp.TYPE_BILINEAR);
        
return
op.filter(image,
null
);
    
}
 
    
public
BufferedImage scale(Float s) {
        
int
srcW = image.getWidth();
        
int
srcH = image.getHeight();
        
int
newW = Math.round(srcW * s);
        
int
newH = Math.round(srcH * s);
        
// 先做水平方向上的伸缩变换
        
BufferedImage tmp =
new
BufferedImage(newW, newH, image.getType());
        
Graphics2D g = tmp.createGraphics();
        
for
(
int
x =
0
; x < newW; x++) {
            
g.setClip(x,
0
,
1
, srcH);
            
// 按比例放缩
            
g.drawImage(image, x - x * srcW / newW,
0
,
null
);
        
}
 
        
// 再做垂直方向上的伸缩变换
        
BufferedImage dst =
new
BufferedImage(newW, newH, image.getType());
        
g = dst.createGraphics();
        
for
(
int
y =
0
; y < newH; y++) {
            
g.setClip(
0
, y, newW,
1
);
            
// 按比例放缩
            
g.drawImage(tmp,
0
, y - y * srcH / newH,
null
);
        
}
        
return
dst;
    
}
 
}

转载于:https://www.cnblogs.com/leo3689/p/4419580.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/109492.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • oracle分页查询解释

    oracle分页查询解释select*fromt_userorderbyuser_id;——————————————–分页的必须参数–当前页–每页几条数据–一共多少页–总记录数————对于分页查询而言,最终需要两个参数(一个是开始条数,一个是结束条数)———select*from(SELEC…

    2022年5月28日
    38
  • TCP-三次握手

    TCP-三次握手文章目录三次握手三次握手过程详解三次握手的状态变化面试题:四次挥手三次握手简单示意图:客户端–发送带有SYN标志的数据包–一次握手–服务端服务端–发送带有SYN/ACK标志的数据包–二次握手–客户端客户端–发送带有带有ACK标志的数据包–三次握手–服务端SYN同步序列编号(SynchronizeSequenceNumbers):是TCP/IP建立连接时使用的握手信号。在客户机和服务器之间建立正常的TCP网络连接时,客户机首先发出一个SYN消息,服务器使用SYN

    2022年10月3日
    2
  • pycharm 查看函数帮助_WINCC记录字符串变量

    pycharm 查看函数帮助_WINCC记录字符串变量【为了方便自己以后查阅,记录下使用PyCharm时的一些小技巧】正在学习Python,在调试Python程序时,遇到了一个非常大的问题:如何能够方便地查看变量的取值呢?由于使用matlab多年,深深地习惯了Matlab方便地参考变量取值的功能,所以,对于正在学习的python没办法实时查看变量取值感到很是郁闷没想到,原来PyCharm具有这个功能,只不过之前没有发现而已对于将要调试

    2022年8月27日
    6
  • 用SpringBoot手把手教你写出优雅的后端接口

    点击上方“全栈程序员社区”,星标公众号 重磅干货,第一时间送达 前言 一个后端接口大致分为四个部分组成:接口地址(url)、接口请求方式(get、post等)、请求数据(reque…

    2021年6月23日
    118
  • python 字符串比较忽略大小写

    python 字符串比较忽略大小写类似javaequalsIgnoreCase实现字符串比较网上找到的无非两种,一种转换大小写,一种使用re模块的search方法忽略大小写。但是在实际使用中发现直接使用re模块比较后直接if判断存在出错的情况,所以直接自己手动写了一个方法:defequalsIgnoreCase(a,b):ifisinstance(a,str):ifisinstance(b,str):returnlen(a)==len(b)

    2022年6月18日
    159
  • mock测试概念「建议收藏」

    mock测试概念「建议收藏」mock测试概念:mock是在测试过程中,对于一些不容易构造/获取的对象,创建啊一个mock对象来模拟对象的行为mock对象使用范畴真实对象具有不可确定的行为。真实对象很难被创建。真实对象的某些行为很难触发。真实情况令程序运行速度很难。真实对象实际上并不存在。测试隔离的实现。mock有什么用?解除一些依赖关系,当测试部分接口实现,需要依赖于与其他接口与,而其他接口没完…

    2022年6月20日
    23

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号