验证码图片

验证码图片

http://www.oschina.net/code/snippet_616487_15391 原网址:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
package
com.coolinsoft.miaosha.util.ocr;
 
import
java.awt.Color;
import
java.awt.Graphics2D;
import
java.awt.color.ColorSpace;
import
java.awt.geom.AffineTransform;
import
java.awt.image.AffineTransformOp;
import
java.awt.image.BufferedImage;
import
java.awt.image.ColorConvertOp;
import
java.awt.image.ColorModel;
import
java.awt.image.MemoryImageSource;
import
java.awt.image.PixelGrabber;
import
java.util.HashMap;
import
java.util.Map;
 
public
class
ImageFilter {
    
private
BufferedImage image;
    
private
int
iw, ih;  
//图片宽度、高度
    
private
int
[] pixels;
//像素
 
    
public
ImageFilter(BufferedImage image) {
        
this
.image = image;
        
iw = image.getWidth();
        
ih = image.getHeight();
        
pixels =
new
int
[iw * ih];
    
}
 
    
/** 图像二值化 */
    
public
BufferedImage changeGrey() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
        
// 设定二值化的域值,默认值为100
        
int
grey =
150
;
        
// 对图像进行二值化处理,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
0
; i < iw * ih; i++) {
            
int
red, green, blue;
            
int
alpha = cm.getAlpha(pixels[i]);
            
if
(cm.getRed(pixels[i]) > grey) {
                
red =
255
;
            
}
else
{
                
red =
0
;
            
}
 
            
if
(cm.getGreen(pixels[i]) > grey) {
                
green =
255
;
            
}
else
{
                
green =
0
;
            
}
 
            
if
(cm.getBlue(pixels[i]) > grey) {
                
blue =
255
;
            
}
else
{
                
blue =
0
;
            
}
 
            
pixels[i] = alpha <<
24
| red <<
16
| green <<
8
| blue;
        
}
        
// 将数组中的象素产生一个图像
        
return
ImageIOHelper.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,pixels,
0
, iw));
    
}
 
    
/** 提升清晰度,进行锐化 */
    
public
BufferedImage sharp() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,
                
pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
 
        
// 象素的中间变量
        
int
tempPixels[] =
new
int
[iw * ih];
        
for
(
int
i =
0
; i < iw * ih; i++) {
            
tempPixels[i] = pixels[i];
        
}
        
// 对图像进行尖锐化处理,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
1
; i < ih -
1
; i++) {
            
for
(
int
j =
1
; j < iw -
1
; j++) {
                
int
alpha = cm.getAlpha(pixels[i * iw + j]);
 
                
// 对图像进行尖锐化
                
int
red6 = cm.getRed(pixels[i * iw + j +
1
]);
                
int
red5 = cm.getRed(pixels[i * iw + j]);
                
int
red8 = cm.getRed(pixels[(i +
1
) * iw + j]);
                
int
sharpRed = Math.abs(red6 - red5) + Math.abs(red8 - red5);
 
                
int
green5 = cm.getGreen(pixels[i * iw + j]);
                
int
green6 = cm.getGreen(pixels[i * iw + j +
1
]);
                
int
green8 = cm.getGreen(pixels[(i +
1
) * iw + j]);
                
int
sharpGreen = Math.abs(green6 - green5)
                        
+ Math.abs(green8 - green5);
 
                
int
blue5 = cm.getBlue(pixels[i * iw + j]);
                
int
blue6 = cm.getBlue(pixels[i * iw + j +
1
]);
                
int
blue8 = cm.getBlue(pixels[(i +
1
) * iw + j]);
                
int
sharpBlue = Math.abs(blue6 - blue5)
                        
+ Math.abs(blue8 - blue5);
 
                
if
(sharpRed >
255
) {
                    
sharpRed =
255
;
                
}
                
if
(sharpGreen >
255
) {
                    
sharpGreen =
255
;
                
}
                
if
(sharpBlue >
255
) {
                    
sharpBlue =
255
;
                
}
 
                
tempPixels[i * iw + j] = alpha <<
24
| sharpRed <<
16
                        
| sharpGreen <<
8
| sharpBlue;
            
}
        
}
 
        
// 将数组中的象素产生一个图像
        
return
ImageIOHelper
                
.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,
                        
tempPixels,
0
, iw));
    
}
     
     
     
     
     
     
 
 
    
public
static
int
isWhite(
int
colorInt) {
        
Color color =
new
Color(colorInt);
        
if
(color.getRed() + color.getGreen() + color.getBlue() >
600
) {
            
return
1
;
        
}
        
return
0
;
    
}
     
    
public 
BufferedImage removeBackgroud(){
        
BufferedImage img =
this
.image;
        
img = img.getSubimage(
1
,
1
, img.getWidth() -
2
, img.getHeight() -
2
);
        
int
width = img.getWidth();
        
int
height = img.getHeight();
        
double
subWidth = (
double
) width /
5.0
;
        
for
(
int
i =
0
; i <
5
; i++) {
            
Map<Integer, Integer> map =
new
HashMap<Integer, Integer>();
           
for
(
int
x = (
int
) (
1
+ i * subWidth); x < (i +
1
) * subWidth && x < width -
1
; ++x) {
              
for
(
int
y =
0
; y < height; ++y) {
                  
if
(isWhite(img.getRGB(x, y)) ==
1
)
                      
continue
;
                  
if
(map.containsKey(img.getRGB(x, y))) {
                      
map.put(img.getRGB(x, y), map.get(img.getRGB(x, y)) +
1
);
                  
}
else
{
                      
map.put(img.getRGB(x, y),
1
);
                  
}
              
}
           
}
           
int
max =
0
;
           
int
colorMax =
0
;
           
for
(Integer color : map.keySet()) {
                
if
(max < map.get(color)) {
                 
max = map.get(color);
                 
colorMax = color;
           
}
        
}
        
for
(
int
x = (
int
) (
1
+ i * subWidth); x < (i +
1
) * subWidth && x < width -
1
; ++x) {
            
for
(
int
y =
0
; y < height; ++y) {
                
if
(img.getRGB(x, y) != colorMax) {
                    
img.setRGB(x, y, Color.WHITE.getRGB());
                
}
else
{
                     
img.setRGB(x, y, Color.BLACK.getRGB());
                
}
            
}
        
}
      
}
       
return
img;
   
}
     
 
    
/** 中值滤波 */
    
public
BufferedImage median() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,
                
pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
        
// 对图像进行中值滤波,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
1
; i < ih -
1
; i++) {
            
for
(
int
j =
1
; j < iw -
1
; j++) {
                
int
red, green, blue;
                
int
alpha = cm.getAlpha(pixels[i * iw + j]);
 
                
//int red2 = cm.getRed(pixels[(i - 1) * iw + j]);
                
int
red4 = cm.getRed(pixels[i * iw + j -
1
]);
                
int
red5 = cm.getRed(pixels[i * iw + j]);
                
int
red6 = cm.getRed(pixels[i * iw + j +
1
]);
                
//int red8 = cm.getRed(pixels[(i + 1) * iw + j]);
 
                
// 水平方向进行中值滤波
                
if
(red4 >= red5) {
                    
if
(red5 >= red6) {
                        
red = red5;
                    
}
else
{
                        
if
(red4 >= red6) {
                            
red = red6;
                        
}
else
{
                            
red = red4;
                        
}
                    
}
                
}
else
{
                    
if
(red4 > red6) {
                        
red = red4;
                    
}
else
{
                        
if
(red5 > red6) {
                            
red = red6;
                        
}
else
{
                            
red = red5;
                        
}
                    
}
                
}
 
                
// int green2 = cm.getGreen(pixels[(i - 1) * iw + j]);
                
int
green4 = cm.getGreen(pixels[i * iw + j -
1
]);
                
int
green5 = cm.getGreen(pixels[i * iw + j]);
                
int
green6 = cm.getGreen(pixels[i * iw + j +
1
]);
                
// int green8 = cm.getGreen(pixels[(i + 1) * iw + j]);
 
                
// 水平方向进行中值滤波
                
if
(green4 >= green5) {
                    
if
(green5 >= green6) {
                        
green = green5;
                    
}
else
{
                        
if
(green4 >= green6) {
                            
green = green6;
                        
}
else
{
                            
green = green4;
                        
}
                    
}
                
}
else
{
                    
if
(green4 > green6) {
                        
green = green4;
                    
}
else
{
                        
if
(green5 > green6) {
                            
green = green6;
                        
}
else
{
                            
green = green5;
                        
}
                    
}
                
}
 
                
// int blue2 = cm.getBlue(pixels[(i - 1) * iw + j]);
                
int
blue4 = cm.getBlue(pixels[i * iw + j -
1
]);
                
int
blue5 = cm.getBlue(pixels[i * iw + j]);
                
int
blue6 = cm.getBlue(pixels[i * iw + j +
1
]);
                
// int blue8 = cm.getBlue(pixels[(i + 1) * iw + j]);
 
                
// 水平方向进行中值滤波
                
if
(blue4 >= blue5) {
                    
if
(blue5 >= blue6) {
                        
blue = blue5;
                    
}
else
{
                        
if
(blue4 >= blue6) {
                            
blue = blue6;
                        
}
else
{
                            
blue = blue4;
                        
}
                    
}
                
}
else
{
                    
if
(blue4 > blue6) {
                        
blue = blue4;
                    
}
else
{
                        
if
(blue5 > blue6) {
                            
blue = blue6;
                        
}
else
{
                            
blue = blue5;
                        
}
                    
}
                
}
                
pixels[i * iw + j] = alpha <<
24
| red <<
16
| green <<
8
                        
| blue;
            
}
        
}
 
        
// 将数组中的象素产生一个图像
        
return
ImageIOHelper
                
.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,
                        
pixels,
0
, iw));
    
}
 
    
/** 线性灰度变换 */
    
public
BufferedImage lineGrey() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,
                
pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
        
// 对图像进行进行线性拉伸,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
0
; i < iw * ih; i++) {
            
int
alpha = cm.getAlpha(pixels[i]);
            
int
red = cm.getRed(pixels[i]);
            
int
green = cm.getGreen(pixels[i]);
            
int
blue = cm.getBlue(pixels[i]);
 
            
// 增加了图像的亮度
            
red = (
int
) (
1.1
* red +
30
);
            
green = (
int
) (
1.1
* green +
30
);
            
blue = (
int
) (
1.1
* blue +
30
);
            
if
(red >=
255
) {
                
red =
255
;
            
}
            
if
(green >=
255
) {
                
green =
255
;
            
}
            
if
(blue >=
255
) {
                
blue =
255
;
            
}
            
pixels[i] = alpha <<
24
| red <<
16
| green <<
8
| blue;
        
}
 
        
// 将数组中的象素产生一个图像
 
        
return
ImageIOHelper
                
.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,
                        
pixels,
0
, iw));
    
}
 
    
/** 转换为黑白灰度图 */
    
public
BufferedImage grayFilter() {
        
ColorSpace cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);
        
ColorConvertOp op =
new
ColorConvertOp(cs,
null
);
        
return
op.filter(image,
null
);
    
}
 
    
/** 平滑缩放 */
    
public
BufferedImage scaling(
double
s) {
        
AffineTransform tx =
new
AffineTransform();
        
tx.scale(s, s);
        
AffineTransformOp op =
new
AffineTransformOp(tx,
                
AffineTransformOp.TYPE_BILINEAR);
        
return
op.filter(image,
null
);
    
}
 
    
public
BufferedImage scale(Float s) {
        
int
srcW = image.getWidth();
        
int
srcH = image.getHeight();
        
int
newW = Math.round(srcW * s);
        
int
newH = Math.round(srcH * s);
        
// 先做水平方向上的伸缩变换
        
BufferedImage tmp =
new
BufferedImage(newW, newH, image.getType());
        
Graphics2D g = tmp.createGraphics();
        
for
(
int
x =
0
; x < newW; x++) {
            
g.setClip(x,
0
,
1
, srcH);
            
// 按比例放缩
            
g.drawImage(image, x - x * srcW / newW,
0
,
null
);
        
}
 
        
// 再做垂直方向上的伸缩变换
        
BufferedImage dst =
new
BufferedImage(newW, newH, image.getType());
        
g = dst.createGraphics();
        
for
(
int
y =
0
; y < newH; y++) {
            
g.setClip(
0
, y, newW,
1
);
            
// 按比例放缩
            
g.drawImage(tmp,
0
, y - y * srcH / newH,
null
);
        
}
        
return
dst;
    
}
 
}

代码]将验证码抽取下来之后 零食存在本地 惊进行解析     跳至 [1] [全屏预览]

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
package
com.coolinsoft.miaosha.util.ocr;
 
import
java.awt.Color;
import
java.awt.Graphics2D;
import
java.awt.color.ColorSpace;
import
java.awt.geom.AffineTransform;
import
java.awt.image.AffineTransformOp;
import
java.awt.image.BufferedImage;
import
java.awt.image.ColorConvertOp;
import
java.awt.image.ColorModel;
import
java.awt.image.MemoryImageSource;
import
java.awt.image.PixelGrabber;
import
java.util.HashMap;
import
java.util.Map;
 
public
class
ImageFilter {
    
private
BufferedImage image;
    
private
int
iw, ih;  
//图片宽度、高度
    
private
int
[] pixels;
//像素
 
    
public
ImageFilter(BufferedImage image) {
        
this
.image = image;
        
iw = image.getWidth();
        
ih = image.getHeight();
        
pixels =
new
int
[iw * ih];
    
}
 
    
/** 图像二值化 */
    
public
BufferedImage changeGrey() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
        
// 设定二值化的域值,默认值为100
        
int
grey =
150
;
        
// 对图像进行二值化处理,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
0
; i < iw * ih; i++) {
            
int
red, green, blue;
            
int
alpha = cm.getAlpha(pixels[i]);
            
if
(cm.getRed(pixels[i]) > grey) {
                
red =
255
;
            
}
else
{
                
red =
0
;
            
}
 
            
if
(cm.getGreen(pixels[i]) > grey) {
                
green =
255
;
            
}
else
{
                
green =
0
;
            
}
 
            
if
(cm.getBlue(pixels[i]) > grey) {
                
blue =
255
;
            
}
else
{
                
blue =
0
;
            
}
 
            
pixels[i] = alpha <<
24
| red <<
16
| green <<
8
| blue;
        
}
        
// 将数组中的象素产生一个图像
        
return
ImageIOHelper.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,pixels,
0
, iw));
    
}
 
    
/** 提升清晰度,进行锐化 */
    
public
BufferedImage sharp() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,
                
pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
 
        
// 象素的中间变量
        
int
tempPixels[] =
new
int
[iw * ih];
        
for
(
int
i =
0
; i < iw * ih; i++) {
            
tempPixels[i] = pixels[i];
        
}
        
// 对图像进行尖锐化处理,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
1
; i < ih -
1
; i++) {
            
for
(
int
j =
1
; j < iw -
1
; j++) {
                
int
alpha = cm.getAlpha(pixels[i * iw + j]);
 
                
// 对图像进行尖锐化
                
int
red6 = cm.getRed(pixels[i * iw + j +
1
]);
                
int
red5 = cm.getRed(pixels[i * iw + j]);
                
int
red8 = cm.getRed(pixels[(i +
1
) * iw + j]);
                
int
sharpRed = Math.abs(red6 - red5) + Math.abs(red8 - red5);
 
                
int
green5 = cm.getGreen(pixels[i * iw + j]);
                
int
green6 = cm.getGreen(pixels[i * iw + j +
1
]);
                
int
green8 = cm.getGreen(pixels[(i +
1
) * iw + j]);
                
int
sharpGreen = Math.abs(green6 - green5)
                        
+ Math.abs(green8 - green5);
 
                
int
blue5 = cm.getBlue(pixels[i * iw + j]);
                
int
blue6 = cm.getBlue(pixels[i * iw + j +
1
]);
                
int
blue8 = cm.getBlue(pixels[(i +
1
) * iw + j]);
                
int
sharpBlue = Math.abs(blue6 - blue5)
                        
+ Math.abs(blue8 - blue5);
 
                
if
(sharpRed >
255
) {
                    
sharpRed =
255
;
                
}
                
if
(sharpGreen >
255
) {
                    
sharpGreen =
255
;
                
}
                
if
(sharpBlue >
255
) {
                    
sharpBlue =
255
;
                
}
 
                
tempPixels[i * iw + j] = alpha <<
24
| sharpRed <<
16
                        
| sharpGreen <<
8
| sharpBlue;
            
}
        
}
 
        
// 将数组中的象素产生一个图像
        
return
ImageIOHelper
                
.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,
                        
tempPixels,
0
, iw));
    
}
     
     
     
     
     
     
 
 
    
public
static
int
isWhite(
int
colorInt) {
        
Color color =
new
Color(colorInt);
        
if
(color.getRed() + color.getGreen() + color.getBlue() >
600
) {
            
return
1
;
        
}
        
return
0
;
    
}
     
    
public 
BufferedImage removeBackgroud(){
        
BufferedImage img =
this
.image;
        
img = img.getSubimage(
1
,
1
, img.getWidth() -
2
, img.getHeight() -
2
);
        
int
width = img.getWidth();
        
int
height = img.getHeight();
        
double
subWidth = (
double
) width /
5.0
;
        
for
(
int
i =
0
; i <
5
; i++) {
            
Map<Integer, Integer> map =
new
HashMap<Integer, Integer>();
           
for
(
int
x = (
int
) (
1
+ i * subWidth); x < (i +
1
) * subWidth && x < width -
1
; ++x) {
              
for
(
int
y =
0
; y < height; ++y) {
                  
if
(isWhite(img.getRGB(x, y)) ==
1
)
                      
continue
;
                  
if
(map.containsKey(img.getRGB(x, y))) {
                      
map.put(img.getRGB(x, y), map.get(img.getRGB(x, y)) +
1
);
                  
}
else
{
                      
map.put(img.getRGB(x, y),
1
);
                  
}
              
}
           
}
           
int
max =
0
;
           
int
colorMax =
0
;
           
for
(Integer color : map.keySet()) {
                
if
(max < map.get(color)) {
                 
max = map.get(color);
                 
colorMax = color;
           
}
        
}
        
for
(
int
x = (
int
) (
1
+ i * subWidth); x < (i +
1
) * subWidth && x < width -
1
; ++x) {
            
for
(
int
y =
0
; y < height; ++y) {
                
if
(img.getRGB(x, y) != colorMax) {
                    
img.setRGB(x, y, Color.WHITE.getRGB());
                
}
else
{
                     
img.setRGB(x, y, Color.BLACK.getRGB());
                
}
            
}
        
}
      
}
       
return
img;
   
}
     
 
    
/** 中值滤波 */
    
public
BufferedImage median() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,
                
pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
        
// 对图像进行中值滤波,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
1
; i < ih -
1
; i++) {
            
for
(
int
j =
1
; j < iw -
1
; j++) {
                
int
red, green, blue;
                
int
alpha = cm.getAlpha(pixels[i * iw + j]);
 
                
//int red2 = cm.getRed(pixels[(i - 1) * iw + j]);
                
int
red4 = cm.getRed(pixels[i * iw + j -
1
]);
                
int
red5 = cm.getRed(pixels[i * iw + j]);
                
int
red6 = cm.getRed(pixels[i * iw + j +
1
]);
                
//int red8 = cm.getRed(pixels[(i + 1) * iw + j]);
 
                
// 水平方向进行中值滤波
                
if
(red4 >= red5) {
                    
if
(red5 >= red6) {
                        
red = red5;
                    
}
else
{
                        
if
(red4 >= red6) {
                            
red = red6;
                        
}
else
{
                            
red = red4;
                        
}
                    
}
                
}
else
{
                    
if
(red4 > red6) {
                        
red = red4;
                    
}
else
{
                        
if
(red5 > red6) {
                            
red = red6;
                        
}
else
{
                            
red = red5;
                        
}
                    
}
                
}
 
                
// int green2 = cm.getGreen(pixels[(i - 1) * iw + j]);
                
int
green4 = cm.getGreen(pixels[i * iw + j -
1
]);
                
int
green5 = cm.getGreen(pixels[i * iw + j]);
                
int
green6 = cm.getGreen(pixels[i * iw + j +
1
]);
                
// int green8 = cm.getGreen(pixels[(i + 1) * iw + j]);
 
                
// 水平方向进行中值滤波
                
if
(green4 >= green5) {
                    
if
(green5 >= green6) {
                        
green = green5;
                    
}
else
{
                        
if
(green4 >= green6) {
                            
green = green6;
                        
}
else
{
                            
green = green4;
                        
}
                    
}
                
}
else
{
                    
if
(green4 > green6) {
                        
green = green4;
                    
}
else
{
                        
if
(green5 > green6) {
                            
green = green6;
                        
}
else
{
                            
green = green5;
                        
}
                    
}
                
}
 
                
// int blue2 = cm.getBlue(pixels[(i - 1) * iw + j]);
                
int
blue4 = cm.getBlue(pixels[i * iw + j -
1
]);
                
int
blue5 = cm.getBlue(pixels[i * iw + j]);
                
int
blue6 = cm.getBlue(pixels[i * iw + j +
1
]);
                
// int blue8 = cm.getBlue(pixels[(i + 1) * iw + j]);
 
                
// 水平方向进行中值滤波
                
if
(blue4 >= blue5) {
                    
if
(blue5 >= blue6) {
                        
blue = blue5;
                    
}
else
{
                        
if
(blue4 >= blue6) {
                            
blue = blue6;
                        
}
else
{
                            
blue = blue4;
                        
}
                    
}
                
}
else
{
                    
if
(blue4 > blue6) {
                        
blue = blue4;
                    
}
else
{
                        
if
(blue5 > blue6) {
                            
blue = blue6;
                        
}
else
{
                            
blue = blue5;
                        
}
                    
}
                
}
                
pixels[i * iw + j] = alpha <<
24
| red <<
16
| green <<
8
                        
| blue;
            
}
        
}
 
        
// 将数组中的象素产生一个图像
        
return
ImageIOHelper
                
.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,
                        
pixels,
0
, iw));
    
}
 
    
/** 线性灰度变换 */
    
public
BufferedImage lineGrey() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,
                
pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
        
// 对图像进行进行线性拉伸,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
0
; i < iw * ih; i++) {
            
int
alpha = cm.getAlpha(pixels[i]);
            
int
red = cm.getRed(pixels[i]);
            
int
green = cm.getGreen(pixels[i]);
            
int
blue = cm.getBlue(pixels[i]);
 
            
// 增加了图像的亮度
            
red = (
int
) (
1.1
* red +
30
);
            
green = (
int
) (
1.1
* green +
30
);
            
blue = (
int
) (
1.1
* blue +
30
);
            
if
(red >=
255
) {
                
red =
255
;
            
}
            
if
(green >=
255
) {
                
green =
255
;
            
}
            
if
(blue >=
255
) {
                
blue =
255
;
            
}
            
pixels[i] = alpha <<
24
| red <<
16
| green <<
8
| blue;
        
}
 
        
// 将数组中的象素产生一个图像
 
        
return
ImageIOHelper
                
.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,
                        
pixels,
0
, iw));
    
}
 
    
/** 转换为黑白灰度图 */
    
public
BufferedImage grayFilter() {
        
ColorSpace cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);
        
ColorConvertOp op =
new
ColorConvertOp(cs,
null
);
        
return
op.filter(image,
null
);
    
}
 
    
/** 平滑缩放 */
    
public
BufferedImage scaling(
double
s) {
        
AffineTransform tx =
new
AffineTransform();
        
tx.scale(s, s);
        
AffineTransformOp op =
new
AffineTransformOp(tx,
                
AffineTransformOp.TYPE_BILINEAR);
        
return
op.filter(image,
null
);
    
}
 
    
public
BufferedImage scale(Float s) {
        
int
srcW = image.getWidth();
        
int
srcH = image.getHeight();
        
int
newW = Math.round(srcW * s);
        
int
newH = Math.round(srcH * s);
        
// 先做水平方向上的伸缩变换
        
BufferedImage tmp =
new
BufferedImage(newW, newH, image.getType());
        
Graphics2D g = tmp.createGraphics();
        
for
(
int
x =
0
; x < newW; x++) {
            
g.setClip(x,
0
,
1
, srcH);
            
// 按比例放缩
            
g.drawImage(image, x - x * srcW / newW,
0
,
null
);
        
}
 
        
// 再做垂直方向上的伸缩变换
        
BufferedImage dst =
new
BufferedImage(newW, newH, image.getType());
        
g = dst.createGraphics();
        
for
(
int
y =
0
; y < newH; y++) {
            
g.setClip(
0
, y, newW,
1
);
            
// 按比例放缩
            
g.drawImage(tmp,
0
, y - y * srcH / newH,
null
);
        
}
        
return
dst;
    
}
 
}

转载于:https://www.cnblogs.com/leo3689/p/4419580.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/109492.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • LabVIEW图像分割算法(基础篇—6)

    LabVIEW图像分割算法(基础篇—6)图像分割是简化机器视觉算法的有效手段之一。它将图像分成一些有意义的区域,以便特征提取过程可基于这些区域提取目标的特征。

    2022年5月20日
    50
  • 怎么新建pytest的ini文件_pytest.ini配置

    怎么新建pytest的ini文件_pytest.ini配置前言pytest配置文件可以改变pytest的运行方式,它是一个固定的文件pytest.ini文件,读取配置信息,按指定的方式去运行查看pytest.ini的配置选项pytest-h找到以下

    2022年7月30日
    1
  • Java8 Stream groupingBy对List进行分组

    Java8 Stream groupingBy对List进行分组提到GroupBy,首先想到的往往是sql中的groupby操作,对搜索结果进行分组。其实Java8StreamsAPI中的Collector也支持流中的数据进行分组和分区操作,本片文章讲简单介绍一下,如何使用groupingBy和partitioningBy来对流中的元素进行分组和分区。 groupingBy 首先看一下Java8之前如果想对一个List做分组操作,我们需要…

    2022年8月20日
    9
  • python操作gitlab_git的使用教程

    python操作gitlab_git的使用教程文章目录一、安装git二、pycharm配置gitlab1、在pycharmsetting中设置git.exe的目录2、VCS—Checkoutfromversioncontrol—Git3、pycharm自动生成.ignore文件三、pycharm中gitlab基础操作1、分支2、pull3、push4、merge一、安装git下载地址:https://git-scm.com/downloads安装说明:https://git-scm.com/downloads二、pycharm配置

    2022年8月25日
    3
  • mysql分析慢查询_开启慢查询日志

    mysql分析慢查询_开启慢查询日志一、生成实验数据原理:sql蠕虫复制(这种生成数据方式同样适用于数据表中有主键的情况)。insertintocomic(name,pen_name,cover)selectname,pen_name,coverfromcomic 二、慢查询日志设置当语句执行时间较长时,通过日志的方式进行记录,这种方式就是慢查询的日志。1、临时开启慢查询日志(如果需要长时间…

    2022年10月14日
    0
  • 手机运行的python_运行python程序的两种方式

    手机运行的python_运行python程序的两种方式前言在手机上运行Python需要用一个软件,叫QPython3L,当然还有别的软件也是可以运行Python的,不过我认为QPython3L是其中相对较好的一个。首先声明一下,我也只是会简单的使用有了它,就可以实现用手机和电脑进行通信了,比如在手机用Socket给电脑发指令,电脑根据收到的指令去执行不同的函数。苹果手机有没有我也不知道,可以自己搜一下如何下载我是在酷安下的,直接搜索qpython3即…

    2022年8月12日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号