验证码图片

验证码图片

http://www.oschina.net/code/snippet_616487_15391 原网址:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
package
com.coolinsoft.miaosha.util.ocr;
 
import
java.awt.Color;
import
java.awt.Graphics2D;
import
java.awt.color.ColorSpace;
import
java.awt.geom.AffineTransform;
import
java.awt.image.AffineTransformOp;
import
java.awt.image.BufferedImage;
import
java.awt.image.ColorConvertOp;
import
java.awt.image.ColorModel;
import
java.awt.image.MemoryImageSource;
import
java.awt.image.PixelGrabber;
import
java.util.HashMap;
import
java.util.Map;
 
public
class
ImageFilter {
    
private
BufferedImage image;
    
private
int
iw, ih;  
//图片宽度、高度
    
private
int
[] pixels;
//像素
 
    
public
ImageFilter(BufferedImage image) {
        
this
.image = image;
        
iw = image.getWidth();
        
ih = image.getHeight();
        
pixels =
new
int
[iw * ih];
    
}
 
    
/** 图像二值化 */
    
public
BufferedImage changeGrey() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
        
// 设定二值化的域值,默认值为100
        
int
grey =
150
;
        
// 对图像进行二值化处理,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
0
; i < iw * ih; i++) {
            
int
red, green, blue;
            
int
alpha = cm.getAlpha(pixels[i]);
            
if
(cm.getRed(pixels[i]) > grey) {
                
red =
255
;
            
}
else
{
                
red =
0
;
            
}
 
            
if
(cm.getGreen(pixels[i]) > grey) {
                
green =
255
;
            
}
else
{
                
green =
0
;
            
}
 
            
if
(cm.getBlue(pixels[i]) > grey) {
                
blue =
255
;
            
}
else
{
                
blue =
0
;
            
}
 
            
pixels[i] = alpha <<
24
| red <<
16
| green <<
8
| blue;
        
}
        
// 将数组中的象素产生一个图像
        
return
ImageIOHelper.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,pixels,
0
, iw));
    
}
 
    
/** 提升清晰度,进行锐化 */
    
public
BufferedImage sharp() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,
                
pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
 
        
// 象素的中间变量
        
int
tempPixels[] =
new
int
[iw * ih];
        
for
(
int
i =
0
; i < iw * ih; i++) {
            
tempPixels[i] = pixels[i];
        
}
        
// 对图像进行尖锐化处理,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
1
; i < ih -
1
; i++) {
            
for
(
int
j =
1
; j < iw -
1
; j++) {
                
int
alpha = cm.getAlpha(pixels[i * iw + j]);
 
                
// 对图像进行尖锐化
                
int
red6 = cm.getRed(pixels[i * iw + j +
1
]);
                
int
red5 = cm.getRed(pixels[i * iw + j]);
                
int
red8 = cm.getRed(pixels[(i +
1
) * iw + j]);
                
int
sharpRed = Math.abs(red6 - red5) + Math.abs(red8 - red5);
 
                
int
green5 = cm.getGreen(pixels[i * iw + j]);
                
int
green6 = cm.getGreen(pixels[i * iw + j +
1
]);
                
int
green8 = cm.getGreen(pixels[(i +
1
) * iw + j]);
                
int
sharpGreen = Math.abs(green6 - green5)
                        
+ Math.abs(green8 - green5);
 
                
int
blue5 = cm.getBlue(pixels[i * iw + j]);
                
int
blue6 = cm.getBlue(pixels[i * iw + j +
1
]);
                
int
blue8 = cm.getBlue(pixels[(i +
1
) * iw + j]);
                
int
sharpBlue = Math.abs(blue6 - blue5)
                        
+ Math.abs(blue8 - blue5);
 
                
if
(sharpRed >
255
) {
                    
sharpRed =
255
;
                
}
                
if
(sharpGreen >
255
) {
                    
sharpGreen =
255
;
                
}
                
if
(sharpBlue >
255
) {
                    
sharpBlue =
255
;
                
}
 
                
tempPixels[i * iw + j] = alpha <<
24
| sharpRed <<
16
                        
| sharpGreen <<
8
| sharpBlue;
            
}
        
}
 
        
// 将数组中的象素产生一个图像
        
return
ImageIOHelper
                
.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,
                        
tempPixels,
0
, iw));
    
}
     
     
     
     
     
     
 
 
    
public
static
int
isWhite(
int
colorInt) {
        
Color color =
new
Color(colorInt);
        
if
(color.getRed() + color.getGreen() + color.getBlue() >
600
) {
            
return
1
;
        
}
        
return
0
;
    
}
     
    
public 
BufferedImage removeBackgroud(){
        
BufferedImage img =
this
.image;
        
img = img.getSubimage(
1
,
1
, img.getWidth() -
2
, img.getHeight() -
2
);
        
int
width = img.getWidth();
        
int
height = img.getHeight();
        
double
subWidth = (
double
) width /
5.0
;
        
for
(
int
i =
0
; i <
5
; i++) {
            
Map<Integer, Integer> map =
new
HashMap<Integer, Integer>();
           
for
(
int
x = (
int
) (
1
+ i * subWidth); x < (i +
1
) * subWidth && x < width -
1
; ++x) {
              
for
(
int
y =
0
; y < height; ++y) {
                  
if
(isWhite(img.getRGB(x, y)) ==
1
)
                      
continue
;
                  
if
(map.containsKey(img.getRGB(x, y))) {
                      
map.put(img.getRGB(x, y), map.get(img.getRGB(x, y)) +
1
);
                  
}
else
{
                      
map.put(img.getRGB(x, y),
1
);
                  
}
              
}
           
}
           
int
max =
0
;
           
int
colorMax =
0
;
           
for
(Integer color : map.keySet()) {
                
if
(max < map.get(color)) {
                 
max = map.get(color);
                 
colorMax = color;
           
}
        
}
        
for
(
int
x = (
int
) (
1
+ i * subWidth); x < (i +
1
) * subWidth && x < width -
1
; ++x) {
            
for
(
int
y =
0
; y < height; ++y) {
                
if
(img.getRGB(x, y) != colorMax) {
                    
img.setRGB(x, y, Color.WHITE.getRGB());
                
}
else
{
                     
img.setRGB(x, y, Color.BLACK.getRGB());
                
}
            
}
        
}
      
}
       
return
img;
   
}
     
 
    
/** 中值滤波 */
    
public
BufferedImage median() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,
                
pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
        
// 对图像进行中值滤波,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
1
; i < ih -
1
; i++) {
            
for
(
int
j =
1
; j < iw -
1
; j++) {
                
int
red, green, blue;
                
int
alpha = cm.getAlpha(pixels[i * iw + j]);
 
                
//int red2 = cm.getRed(pixels[(i - 1) * iw + j]);
                
int
red4 = cm.getRed(pixels[i * iw + j -
1
]);
                
int
red5 = cm.getRed(pixels[i * iw + j]);
                
int
red6 = cm.getRed(pixels[i * iw + j +
1
]);
                
//int red8 = cm.getRed(pixels[(i + 1) * iw + j]);
 
                
// 水平方向进行中值滤波
                
if
(red4 >= red5) {
                    
if
(red5 >= red6) {
                        
red = red5;
                    
}
else
{
                        
if
(red4 >= red6) {
                            
red = red6;
                        
}
else
{
                            
red = red4;
                        
}
                    
}
                
}
else
{
                    
if
(red4 > red6) {
                        
red = red4;
                    
}
else
{
                        
if
(red5 > red6) {
                            
red = red6;
                        
}
else
{
                            
red = red5;
                        
}
                    
}
                
}
 
                
// int green2 = cm.getGreen(pixels[(i - 1) * iw + j]);
                
int
green4 = cm.getGreen(pixels[i * iw + j -
1
]);
                
int
green5 = cm.getGreen(pixels[i * iw + j]);
                
int
green6 = cm.getGreen(pixels[i * iw + j +
1
]);
                
// int green8 = cm.getGreen(pixels[(i + 1) * iw + j]);
 
                
// 水平方向进行中值滤波
                
if
(green4 >= green5) {
                    
if
(green5 >= green6) {
                        
green = green5;
                    
}
else
{
                        
if
(green4 >= green6) {
                            
green = green6;
                        
}
else
{
                            
green = green4;
                        
}
                    
}
                
}
else
{
                    
if
(green4 > green6) {
                        
green = green4;
                    
}
else
{
                        
if
(green5 > green6) {
                            
green = green6;
                        
}
else
{
                            
green = green5;
                        
}
                    
}
                
}
 
                
// int blue2 = cm.getBlue(pixels[(i - 1) * iw + j]);
                
int
blue4 = cm.getBlue(pixels[i * iw + j -
1
]);
                
int
blue5 = cm.getBlue(pixels[i * iw + j]);
                
int
blue6 = cm.getBlue(pixels[i * iw + j +
1
]);
                
// int blue8 = cm.getBlue(pixels[(i + 1) * iw + j]);
 
                
// 水平方向进行中值滤波
                
if
(blue4 >= blue5) {
                    
if
(blue5 >= blue6) {
                        
blue = blue5;
                    
}
else
{
                        
if
(blue4 >= blue6) {
                            
blue = blue6;
                        
}
else
{
                            
blue = blue4;
                        
}
                    
}
                
}
else
{
                    
if
(blue4 > blue6) {
                        
blue = blue4;
                    
}
else
{
                        
if
(blue5 > blue6) {
                            
blue = blue6;
                        
}
else
{
                            
blue = blue5;
                        
}
                    
}
                
}
                
pixels[i * iw + j] = alpha <<
24
| red <<
16
| green <<
8
                        
| blue;
            
}
        
}
 
        
// 将数组中的象素产生一个图像
        
return
ImageIOHelper
                
.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,
                        
pixels,
0
, iw));
    
}
 
    
/** 线性灰度变换 */
    
public
BufferedImage lineGrey() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,
                
pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
        
// 对图像进行进行线性拉伸,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
0
; i < iw * ih; i++) {
            
int
alpha = cm.getAlpha(pixels[i]);
            
int
red = cm.getRed(pixels[i]);
            
int
green = cm.getGreen(pixels[i]);
            
int
blue = cm.getBlue(pixels[i]);
 
            
// 增加了图像的亮度
            
red = (
int
) (
1.1
* red +
30
);
            
green = (
int
) (
1.1
* green +
30
);
            
blue = (
int
) (
1.1
* blue +
30
);
            
if
(red >=
255
) {
                
red =
255
;
            
}
            
if
(green >=
255
) {
                
green =
255
;
            
}
            
if
(blue >=
255
) {
                
blue =
255
;
            
}
            
pixels[i] = alpha <<
24
| red <<
16
| green <<
8
| blue;
        
}
 
        
// 将数组中的象素产生一个图像
 
        
return
ImageIOHelper
                
.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,
                        
pixels,
0
, iw));
    
}
 
    
/** 转换为黑白灰度图 */
    
public
BufferedImage grayFilter() {
        
ColorSpace cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);
        
ColorConvertOp op =
new
ColorConvertOp(cs,
null
);
        
return
op.filter(image,
null
);
    
}
 
    
/** 平滑缩放 */
    
public
BufferedImage scaling(
double
s) {
        
AffineTransform tx =
new
AffineTransform();
        
tx.scale(s, s);
        
AffineTransformOp op =
new
AffineTransformOp(tx,
                
AffineTransformOp.TYPE_BILINEAR);
        
return
op.filter(image,
null
);
    
}
 
    
public
BufferedImage scale(Float s) {
        
int
srcW = image.getWidth();
        
int
srcH = image.getHeight();
        
int
newW = Math.round(srcW * s);
        
int
newH = Math.round(srcH * s);
        
// 先做水平方向上的伸缩变换
        
BufferedImage tmp =
new
BufferedImage(newW, newH, image.getType());
        
Graphics2D g = tmp.createGraphics();
        
for
(
int
x =
0
; x < newW; x++) {
            
g.setClip(x,
0
,
1
, srcH);
            
// 按比例放缩
            
g.drawImage(image, x - x * srcW / newW,
0
,
null
);
        
}
 
        
// 再做垂直方向上的伸缩变换
        
BufferedImage dst =
new
BufferedImage(newW, newH, image.getType());
        
g = dst.createGraphics();
        
for
(
int
y =
0
; y < newH; y++) {
            
g.setClip(
0
, y, newW,
1
);
            
// 按比例放缩
            
g.drawImage(tmp,
0
, y - y * srcH / newH,
null
);
        
}
        
return
dst;
    
}
 
}

代码]将验证码抽取下来之后 零食存在本地 惊进行解析     跳至 [1] [全屏预览]

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
package
com.coolinsoft.miaosha.util.ocr;
 
import
java.awt.Color;
import
java.awt.Graphics2D;
import
java.awt.color.ColorSpace;
import
java.awt.geom.AffineTransform;
import
java.awt.image.AffineTransformOp;
import
java.awt.image.BufferedImage;
import
java.awt.image.ColorConvertOp;
import
java.awt.image.ColorModel;
import
java.awt.image.MemoryImageSource;
import
java.awt.image.PixelGrabber;
import
java.util.HashMap;
import
java.util.Map;
 
public
class
ImageFilter {
    
private
BufferedImage image;
    
private
int
iw, ih;  
//图片宽度、高度
    
private
int
[] pixels;
//像素
 
    
public
ImageFilter(BufferedImage image) {
        
this
.image = image;
        
iw = image.getWidth();
        
ih = image.getHeight();
        
pixels =
new
int
[iw * ih];
    
}
 
    
/** 图像二值化 */
    
public
BufferedImage changeGrey() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
        
// 设定二值化的域值,默认值为100
        
int
grey =
150
;
        
// 对图像进行二值化处理,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
0
; i < iw * ih; i++) {
            
int
red, green, blue;
            
int
alpha = cm.getAlpha(pixels[i]);
            
if
(cm.getRed(pixels[i]) > grey) {
                
red =
255
;
            
}
else
{
                
red =
0
;
            
}
 
            
if
(cm.getGreen(pixels[i]) > grey) {
                
green =
255
;
            
}
else
{
                
green =
0
;
            
}
 
            
if
(cm.getBlue(pixels[i]) > grey) {
                
blue =
255
;
            
}
else
{
                
blue =
0
;
            
}
 
            
pixels[i] = alpha <<
24
| red <<
16
| green <<
8
| blue;
        
}
        
// 将数组中的象素产生一个图像
        
return
ImageIOHelper.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,pixels,
0
, iw));
    
}
 
    
/** 提升清晰度,进行锐化 */
    
public
BufferedImage sharp() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,
                
pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
 
        
// 象素的中间变量
        
int
tempPixels[] =
new
int
[iw * ih];
        
for
(
int
i =
0
; i < iw * ih; i++) {
            
tempPixels[i] = pixels[i];
        
}
        
// 对图像进行尖锐化处理,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
1
; i < ih -
1
; i++) {
            
for
(
int
j =
1
; j < iw -
1
; j++) {
                
int
alpha = cm.getAlpha(pixels[i * iw + j]);
 
                
// 对图像进行尖锐化
                
int
red6 = cm.getRed(pixels[i * iw + j +
1
]);
                
int
red5 = cm.getRed(pixels[i * iw + j]);
                
int
red8 = cm.getRed(pixels[(i +
1
) * iw + j]);
                
int
sharpRed = Math.abs(red6 - red5) + Math.abs(red8 - red5);
 
                
int
green5 = cm.getGreen(pixels[i * iw + j]);
                
int
green6 = cm.getGreen(pixels[i * iw + j +
1
]);
                
int
green8 = cm.getGreen(pixels[(i +
1
) * iw + j]);
                
int
sharpGreen = Math.abs(green6 - green5)
                        
+ Math.abs(green8 - green5);
 
                
int
blue5 = cm.getBlue(pixels[i * iw + j]);
                
int
blue6 = cm.getBlue(pixels[i * iw + j +
1
]);
                
int
blue8 = cm.getBlue(pixels[(i +
1
) * iw + j]);
                
int
sharpBlue = Math.abs(blue6 - blue5)
                        
+ Math.abs(blue8 - blue5);
 
                
if
(sharpRed >
255
) {
                    
sharpRed =
255
;
                
}
                
if
(sharpGreen >
255
) {
                    
sharpGreen =
255
;
                
}
                
if
(sharpBlue >
255
) {
                    
sharpBlue =
255
;
                
}
 
                
tempPixels[i * iw + j] = alpha <<
24
| sharpRed <<
16
                        
| sharpGreen <<
8
| sharpBlue;
            
}
        
}
 
        
// 将数组中的象素产生一个图像
        
return
ImageIOHelper
                
.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,
                        
tempPixels,
0
, iw));
    
}
     
     
     
     
     
     
 
 
    
public
static
int
isWhite(
int
colorInt) {
        
Color color =
new
Color(colorInt);
        
if
(color.getRed() + color.getGreen() + color.getBlue() >
600
) {
            
return
1
;
        
}
        
return
0
;
    
}
     
    
public 
BufferedImage removeBackgroud(){
        
BufferedImage img =
this
.image;
        
img = img.getSubimage(
1
,
1
, img.getWidth() -
2
, img.getHeight() -
2
);
        
int
width = img.getWidth();
        
int
height = img.getHeight();
        
double
subWidth = (
double
) width /
5.0
;
        
for
(
int
i =
0
; i <
5
; i++) {
            
Map<Integer, Integer> map =
new
HashMap<Integer, Integer>();
           
for
(
int
x = (
int
) (
1
+ i * subWidth); x < (i +
1
) * subWidth && x < width -
1
; ++x) {
              
for
(
int
y =
0
; y < height; ++y) {
                  
if
(isWhite(img.getRGB(x, y)) ==
1
)
                      
continue
;
                  
if
(map.containsKey(img.getRGB(x, y))) {
                      
map.put(img.getRGB(x, y), map.get(img.getRGB(x, y)) +
1
);
                  
}
else
{
                      
map.put(img.getRGB(x, y),
1
);
                  
}
              
}
           
}
           
int
max =
0
;
           
int
colorMax =
0
;
           
for
(Integer color : map.keySet()) {
                
if
(max < map.get(color)) {
                 
max = map.get(color);
                 
colorMax = color;
           
}
        
}
        
for
(
int
x = (
int
) (
1
+ i * subWidth); x < (i +
1
) * subWidth && x < width -
1
; ++x) {
            
for
(
int
y =
0
; y < height; ++y) {
                
if
(img.getRGB(x, y) != colorMax) {
                    
img.setRGB(x, y, Color.WHITE.getRGB());
                
}
else
{
                     
img.setRGB(x, y, Color.BLACK.getRGB());
                
}
            
}
        
}
      
}
       
return
img;
   
}
     
 
    
/** 中值滤波 */
    
public
BufferedImage median() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,
                
pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
        
// 对图像进行中值滤波,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
1
; i < ih -
1
; i++) {
            
for
(
int
j =
1
; j < iw -
1
; j++) {
                
int
red, green, blue;
                
int
alpha = cm.getAlpha(pixels[i * iw + j]);
 
                
//int red2 = cm.getRed(pixels[(i - 1) * iw + j]);
                
int
red4 = cm.getRed(pixels[i * iw + j -
1
]);
                
int
red5 = cm.getRed(pixels[i * iw + j]);
                
int
red6 = cm.getRed(pixels[i * iw + j +
1
]);
                
//int red8 = cm.getRed(pixels[(i + 1) * iw + j]);
 
                
// 水平方向进行中值滤波
                
if
(red4 >= red5) {
                    
if
(red5 >= red6) {
                        
red = red5;
                    
}
else
{
                        
if
(red4 >= red6) {
                            
red = red6;
                        
}
else
{
                            
red = red4;
                        
}
                    
}
                
}
else
{
                    
if
(red4 > red6) {
                        
red = red4;
                    
}
else
{
                        
if
(red5 > red6) {
                            
red = red6;
                        
}
else
{
                            
red = red5;
                        
}
                    
}
                
}
 
                
// int green2 = cm.getGreen(pixels[(i - 1) * iw + j]);
                
int
green4 = cm.getGreen(pixels[i * iw + j -
1
]);
                
int
green5 = cm.getGreen(pixels[i * iw + j]);
                
int
green6 = cm.getGreen(pixels[i * iw + j +
1
]);
                
// int green8 = cm.getGreen(pixels[(i + 1) * iw + j]);
 
                
// 水平方向进行中值滤波
                
if
(green4 >= green5) {
                    
if
(green5 >= green6) {
                        
green = green5;
                    
}
else
{
                        
if
(green4 >= green6) {
                            
green = green6;
                        
}
else
{
                            
green = green4;
                        
}
                    
}
                
}
else
{
                    
if
(green4 > green6) {
                        
green = green4;
                    
}
else
{
                        
if
(green5 > green6) {
                            
green = green6;
                        
}
else
{
                            
green = green5;
                        
}
                    
}
                
}
 
                
// int blue2 = cm.getBlue(pixels[(i - 1) * iw + j]);
                
int
blue4 = cm.getBlue(pixels[i * iw + j -
1
]);
                
int
blue5 = cm.getBlue(pixels[i * iw + j]);
                
int
blue6 = cm.getBlue(pixels[i * iw + j +
1
]);
                
// int blue8 = cm.getBlue(pixels[(i + 1) * iw + j]);
 
                
// 水平方向进行中值滤波
                
if
(blue4 >= blue5) {
                    
if
(blue5 >= blue6) {
                        
blue = blue5;
                    
}
else
{
                        
if
(blue4 >= blue6) {
                            
blue = blue6;
                        
}
else
{
                            
blue = blue4;
                        
}
                    
}
                
}
else
{
                    
if
(blue4 > blue6) {
                        
blue = blue4;
                    
}
else
{
                        
if
(blue5 > blue6) {
                            
blue = blue6;
                        
}
else
{
                            
blue = blue5;
                        
}
                    
}
                
}
                
pixels[i * iw + j] = alpha <<
24
| red <<
16
| green <<
8
                        
| blue;
            
}
        
}
 
        
// 将数组中的象素产生一个图像
        
return
ImageIOHelper
                
.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,
                        
pixels,
0
, iw));
    
}
 
    
/** 线性灰度变换 */
    
public
BufferedImage lineGrey() {
        
PixelGrabber pg =
new
PixelGrabber(image.getSource(),
0
,
0
, iw, ih,
                
pixels,
0
, iw);
        
try
{
            
pg.grabPixels();
        
}
catch
(InterruptedException e) {
            
e.printStackTrace();
        
}
        
// 对图像进行进行线性拉伸,Alpha值保持不变
        
ColorModel cm = ColorModel.getRGBdefault();
        
for
(
int
i =
0
; i < iw * ih; i++) {
            
int
alpha = cm.getAlpha(pixels[i]);
            
int
red = cm.getRed(pixels[i]);
            
int
green = cm.getGreen(pixels[i]);
            
int
blue = cm.getBlue(pixels[i]);
 
            
// 增加了图像的亮度
            
red = (
int
) (
1.1
* red +
30
);
            
green = (
int
) (
1.1
* green +
30
);
            
blue = (
int
) (
1.1
* blue +
30
);
            
if
(red >=
255
) {
                
red =
255
;
            
}
            
if
(green >=
255
) {
                
green =
255
;
            
}
            
if
(blue >=
255
) {
                
blue =
255
;
            
}
            
pixels[i] = alpha <<
24
| red <<
16
| green <<
8
| blue;
        
}
 
        
// 将数组中的象素产生一个图像
 
        
return
ImageIOHelper
                
.imageProducerToBufferedImage(
new
MemoryImageSource(iw, ih,
                        
pixels,
0
, iw));
    
}
 
    
/** 转换为黑白灰度图 */
    
public
BufferedImage grayFilter() {
        
ColorSpace cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);
        
ColorConvertOp op =
new
ColorConvertOp(cs,
null
);
        
return
op.filter(image,
null
);
    
}
 
    
/** 平滑缩放 */
    
public
BufferedImage scaling(
double
s) {
        
AffineTransform tx =
new
AffineTransform();
        
tx.scale(s, s);
        
AffineTransformOp op =
new
AffineTransformOp(tx,
                
AffineTransformOp.TYPE_BILINEAR);
        
return
op.filter(image,
null
);
    
}
 
    
public
BufferedImage scale(Float s) {
        
int
srcW = image.getWidth();
        
int
srcH = image.getHeight();
        
int
newW = Math.round(srcW * s);
        
int
newH = Math.round(srcH * s);
        
// 先做水平方向上的伸缩变换
        
BufferedImage tmp =
new
BufferedImage(newW, newH, image.getType());
        
Graphics2D g = tmp.createGraphics();
        
for
(
int
x =
0
; x < newW; x++) {
            
g.setClip(x,
0
,
1
, srcH);
            
// 按比例放缩
            
g.drawImage(image, x - x * srcW / newW,
0
,
null
);
        
}
 
        
// 再做垂直方向上的伸缩变换
        
BufferedImage dst =
new
BufferedImage(newW, newH, image.getType());
        
g = dst.createGraphics();
        
for
(
int
y =
0
; y < newH; y++) {
            
g.setClip(
0
, y, newW,
1
);
            
// 按比例放缩
            
g.drawImage(tmp,
0
, y - y * srcH / newH,
null
);
        
}
        
return
dst;
    
}
 
}

转载于:https://www.cnblogs.com/leo3689/p/4419580.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/109492.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 多元有序logistic回归分析_SPSS:二元Logistic回归中自变量的处理和解读——有序多分类变量的处理…

    多元有序logistic回归分析_SPSS:二元Logistic回归中自变量的处理和解读——有序多分类变量的处理…SPSS 二元 Logistic 回归中自变量的处理和解读 有序多分类变量的处理 有序多分类变量是很常见的变量形式 通常在变量中有多个可能会出现的取值 各取值之间还存在等级关系 比如高血压分级 0 正常 1 正常高值 2 1 级高血压 3 2 级高血压 4 3 级高血压 尿蛋白水平 0 1 2 3 4 等等 与无序多分类变量不同 有序多分类变量的各个选项直接呈现向一个方向递增或

    2025年10月9日
    2
  • python自学基础1week

    python自学基础1week一、python老师介绍二、为什么要学习python?三、学习python有前途吗?疗程1:语言基础疗程2:网络编程疗程3:web基础开发疗程4:算法&设计模式疗程5:pytho

    2022年7月6日
    22
  • 实战篇-OpenSSL之TripleDES加密算法-CFB64模式[通俗易懂]

    本文属于《OpenSSL加密算法库使用系列教程》之一,欢迎查看其它文章。实战篇-OpenSSL之TripleDES加密算法-CFB64模式一、TripleDES简介二、CFB64模式1、命令行操作2、函数说明3、编程实现(1)特别注意(2)实现CFB64模式加解密(3)测试代码一、TripleDES简介3DES又称TripleDES,是DES加密算法的一种模式,它使用2条不同的56位的密钥对数据进行三次加密。数据加密标准(DES)是美国的一种由来已久的加密标准,它使用对称密钥加密法,并于1981年

    2022年4月8日
    123
  • 神经网络优化(初始化权重)

    神经网络优化(初始化权重)使隐藏层饱和了,跟之前我们说的输出层饱和问题相似,对于输出层,我们用改进的cost函数,比如cross-entropy,但是对于隐藏层,我们无法通过cost函数来改进更好的方法来初始化权重?因为传统的初始化权重问题是用标准正态分布(均值为0,方差为1)随机初始化的,这其实是存在不合理的部分。标准正态分布:可以看出真实数据的

    2022年9月27日
    6
  • 大疆网上测评题库_大疆在线测评 – 逻辑题「建议收藏」

    大疆网上测评题库_大疆在线测评 – 逻辑题「建议收藏」收到大疆测评的邮件,在知乎百度搜了一圈也没搜到题目,只好直接去测评了。我的测评是90道题,其中逻辑题挺烧脑,出现了6道逻辑题,幸好之前看过逻辑学三段论,都能答对。2-7是我测评中出现的题,一模一样,今后是否一样就不能确保了,仅供参考。1.所有的老虎会动;一些动物是老虎;因此,一些动物会动。参考解:True2.所有的宗教狂热分子都偏执;所有偏执的人都是种族主义者;因此,所有的种族主义者都是宗教狂…

    2022年6月29日
    101
  • 项目总结 — RFID 读写器上位机软件

    项目总结 — RFID 读写器上位机软件物联网方向的课程项目:RFID读写器上位机软件,是一个基于MFC的软件,通过与连接的设备(这里是读卡器)与IC卡进行数据的交换,举个例子来说:校园卡,公司的门禁卡等等,这个属于物联网的终端信息交互的一个流程。我理解这里主要是两个大的模块:一个是数据的收发,还有一个是界面显示;数据的收发就是通过上位机软件与下位机进行信息的交互,数据的发送具体在项目中就是写卡操作,数据的接收具体在项目中就是读卡操作。

    2022年5月20日
    93

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号