POJ 2142 The Balance(扩展欧几里德解方程)

POJ 2142 The Balance(扩展欧几里德解方程)

The Balance
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 2490   Accepted: 1091

Description

Ms. Iyo Kiffa-Australis has a balance and only two kinds of weights to measure a dose of medicine. For example, to measure 200mg of aspirin using 300mg weights and 700mg weights, she can put one 700mg weight on the side of the medicine and three 300mg weights on the opposite side (Figure 1). Although she could put four 300mg weights on the medicine side and two 700mg weights on the other (Figure 2), she would not choose this solution because it is less convenient to use more weights.

You are asked to help her by calculating how many weights are required.



POJ 2142 The Balance(扩展欧几里德解方程)

Input

The input is a sequence of datasets. A dataset is a line containing three positive integers a, b, and d separated by a space. The following relations hold: a != b, a <= 10000, b <= 10000, and d <= 50000. You may assume that it is possible to measure d mg using a combination of a mg and b mg weights. In other words, you need not consider “no solution” cases.

The end of the input is indicated by a line containing three zeros separated by a space. It is not a dataset.

Output

The output should be composed of lines, each corresponding to an input dataset (a, b, d). An output line should contain two nonnegative integers x and y separated by a space. They should satisfy the following three conditions.

  • You can measure dmg using x many amg weights and y many bmg weights.
  • The total number of weights (x + y) is the smallest among those pairs of nonnegative integers satisfying the previous condition.
  • The total mass of weights (ax + by) is the smallest among those pairs of nonnegative integers satisfying the previous two conditions.

No extra characters (e.g. extra spaces) should appear in the output.

Sample Input

700 300 200
500 200 300
500 200 500
275 110 330
275 110 385
648 375 4002
3 1 10000
0 0 0

Sample Output

1 3
1 1
1 0
0 3
1 1
49 74
3333 1

Source

 
 
 
代码:
#include<stdio.h>
#include<math.h>
#include<iostream>
#include<algorithm>
using namespace std;
int extend_gcd(int a,int b,int &x,int &y)
{
    int m,tmp;
    if(b==0&&a==0) return -1;
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }    
    m=extend_gcd(b,a%b,x,y);
    tmp=x;
    x=y;
    y=tmp-(a/b)*y;
    return m;
}    
int main()
{
    
    int a,b,d;
    int x,y;
    int X,Y;
    int X1,Y1;
    while(scanf("%d%d%d",&a,&b,&d))
    {
        if(a==0&&b==0&&d==0) break;
        int flag=0;
        if(a<b)
        {
            flag=1;
            int t=a;
            a=b;
            b=t;
        }    
        int gcd=extend_gcd(a,b,x,y);
        x*=d/gcd;
        y*=d/gcd;
        
        int tmp=a/gcd;//Y=y-tmp*t;
        double t=(double)y/tmp;
        int t1=(int)floor(t);
        
        X=x+(b/gcd)*t1;
        Y=y-tmp*t1;
        if(t1!=t)//t是小数
        {
            t1=t1+1;
            X1=x+(b/gcd)*t1;
            Y1=y-tmp*t1;
            if(abs(X1)+abs(Y1)<abs(X)+abs(Y))
            {
                X=X1;
                Y=Y1;
            } 
            else if(abs(X1)+abs(Y1)==abs(X)+abs(Y) && a*abs(X1)+b*abs(Y1)<a*abs(X)+b*abs(Y))
            {
                X=X1;
                Y=Y1;
            }    
        }       
        if(flag==0)
            printf("%d %d\n",abs(X),abs(Y));
        else
             printf("%d %d\n",abs(Y),abs(X));
    }   
    return 0; 
}    

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/110424.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号