sdut2623–The number of steps(概率dp第一弹,求期望)

sdut2623–The number of steps(概率dp第一弹,求期望)

大家好,又见面了,我是全栈君。

The number of steps


Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^

题目描写叙述

    Mary stands in a strange maze, the maze looks like a triangle(the first layer have one room,the second layer have two rooms,the third layer have three rooms …). Now she stands at the top point(the first layer), and the KEY of this maze is in the lowest layer’s leftmost room. Known that each room can only access to its left room and lower left and lower right rooms .If a room doesn’t have its left room, the probability of going to the lower left room and lower right room are a and b (a + b = 1 ). If a room only has it’s left room, the probability of going to the room is 1. If a room has its lower left, lower right rooms and its left room, the probability of going to each room are c, d, e (c + d + e = 1). Now , Mary wants to know how many steps she needs to reach the KEY. Dear friend, can you tell Mary the expected number of steps required to reach the KEY?


输入

There are no more than 70 test cases. 

 

In each case , first Input a positive integer n(0
The input is terminated with 0. This test case is not to be processed.

输出

Please calculate the expected number of steps required to reach the KEY room, there are 2 digits after the decimal point.

演示样例输入

3
0.3 0.7
0.1 0.3 0.6
0 

演示样例输出

3.41

提示

 

来源

2013年山东省第四届ACM大学生程序设计竞赛
概率dp的第一道题目,题目比較简单。
到着求解,最后一个点到最后的期望是0,其它的都由它连接的点的期望求出来。

sdut2623--The number of steps(概率dp第一弹,求期望)
假设i到j的概率是p
ij,
i到i的概率是p
ii
,期望是E,那么求1到4的期望是
1.   E4 = 0 。
2.   E3 =E3 *P33 E4 * P34 + 1 ;
3.   E2 = E2 *P22E4 * P24 + 1  ;
4.   E1 =E1 *P11 + E2 *P12 +E3 * P13 + 1  ;
记忆化搜索,最后推出要求的值
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
double dp[100][100] ;
double a , b , c , d , e ;
int i , j , n ;
int ff(int x,int y)
{
    if( x <= n && y >=(n+1)-x )
        return 1 ;
    return 0 ;
}
void f()
{

    return ;
}
int main()
{
    while(scanf("%d", &n) && n)
    {
        scanf("%lf %lf", &a, &b);
        scanf("%lf %lf %lf", &c, &d, &e);
        memset(dp,0,sizeof(dp));
        for(i = n ; i >= 1 ; i--)
        {
            for(j = (n+1)-i ; j <= n ; j++)
            {
                if(i == n && j == (n+1)-i) continue ;
                else if( i == n )
                    dp[i][j] = 1.0*( dp[i][j-1] ) + 1.0 ;
                else
                {
                    if( j == (n+1)-i )
                        dp[i][j] = a*dp[i+1][j-1] + b*dp[i+1][j] + 1.0 ;
                    else
                        dp[i][j] = c*dp[i+1][j-1] + d*dp[i+1][j] + e*dp[i][j-1] + 1.0 ;
                }
            }
        }
        printf("%.2lf\n", dp[1][n]);
    }
    return 0;
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/115755.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号