自己动手写CPU之第五阶段(3)——MIPS指令集中的逻辑、移位与空指令

自己动手写CPU之第五阶段(3)——MIPS指令集中的逻辑、移位与空指令

大家好,又见面了,我是全栈君。

将陆续上传本人写的新书《自己动手写CPU》(尚未出版),今天是第17篇。我尽量每周四篇

5.4 逻辑、移位操作与空指令说明

      MIPS32指令集架构中定义的逻辑操作指令有8条:andandiororixorxorinorlui。当中ori指令已经实现了,本章要实现其余7条指令。

      MIPS32指令集架构中定义的移位操作指令有6条:sllsllvsrasravsrlsrlv

      MIPS32指令集架构中定义的空指令有2条:nopssnop

当中ssnop是一种特殊类型的空操作。在每一个周期发射多条指令的CPU中,使用ssnop指令能够确保单独占用一个发射周期。OpenMIPS设计为标量处理器,也就是每一个周期发射一条指令,所以ssnop的作用与nop同样。能够依照nop指令的处理方式来处理ssnop指令。

      另外,MIPS32指令集架构中还定义了syncpref2条指令,当中sync指令用于保证载入、存储操作的顺序,对于OpenMIPS而言,是严格依照指令顺序运行的,载入、存储操作也是依照顺序进行的,所以能够将sync指令当作nop指令处理,在这里将其归纳为空指令。pref指令用于缓存预取,OpenMIPS没有实现缓存,所以也能够将pref指令当作nop指令处理,此处也将其归纳为空指令。

      以上17条指令依照格式、作用的不用,又可分为几类,分别说明例如以下。

      1andorxornor

      这4条指令的格式如图5-10所看到的。从图中能够发现这4条指令都是R类型指令。而且指令码都是6’b000000,也就是MIPS32指令集架构中定义的SPECIAL类。此外,第6-10bit都为0,须要根据指令中0-5bit功能码的值进一步推断是哪一种指令。

自己动手写CPU之第五阶段(3)——MIPS指令集中的逻辑、移位与空指令

  •  当功能码是6‘b100100时,表示是and指令。逻辑“与”运算

      指令使用方法为:and rd, rs, rt

      指令作用为:rd <- rs AND rt,将地址为rs的通用寄存器的值。与地址为rt的通用寄存器的值进行逻辑“与”运算。运算结果保存到地址为rd的通用寄存器中。

  •  当功能码是6‘b100101时。表示是or指令,逻辑“或”运算

      指令使用方法为:or rd, rs, rt

      指令作用为:rd <- rs OR rt。将地址为rs的通用寄存器的值,与地址为rt的通用寄存器的值进行逻辑“或”运算,运算结果保存到地址为rd的通用寄存器中。

  •  当功能码是6‘b100110时,表示是xor指令,异或运算

      指令使用方法为:xor rd, rs, rt

      指令作用为:rd <- rs XOR rt,将地址为rs的通用寄存器的值,与地址为rt的通用寄存器的值进行逻辑“异或”运算,运算结果保存到地址为rd的通用寄存器中。

  •  当功能码是6‘b100111时,表示是nor指令。或非运算

      指令使用方法为:nor rd, rs, rt

      指令作用为:rd <- rs NOR rt。将地址为rs的通用寄存器的值。与地址为rt的通用寄存器的值进行逻辑“或非”运算,运算结果保存到地址为rd的通用寄存器中。

      2andixori指令

      这2条指令的格式如图5-11所看到的。从图中能够发现这2条指令都是I类型指令,能够根据指令中26-31bit指令码的值推断是哪一种指令。

 自己动手写CPU之第五阶段(3)——MIPS指令集中的逻辑、移位与空指令

 

  •  当指令码是6’b001100,表示是andi指令,逻辑“与”运算

      指令使用方法为:andi rt, rs, immediate

      指令作用为:rt <- rs AND zero_extended(immediate)。将地址为rs的通用寄存器的值,与指令中马上数进行零扩展后的值进行逻辑“与”运算,运算结果保存到地址为rt的通用寄存器中。

  •  当指令码是6’b001110。表示是xori指令。异或运算

      指令使用方法为:xori rt, rs, immediate

      指令作用为:rt <- rs XOR zero_extended(immediate)。将地址为rs的通用寄存器的值。与指令中马上数进行零扩展后的值进行逻辑“异或”运算,运算结果保存到地址为rt的通用寄存器中。

      3lui指令

      lui指令的格式如图5-12所看到的。

从图中能够发现lui指令是I类型指令,能够根据指令中26-31bit指令码的值是否为6‘b001111。从而推断是否是lui指令。

自己动手写CPU之第五阶段(3)——MIPS指令集中的逻辑、移位与空指令

      指令使用方法为:lui rt, immediate

      指令作用为:rt <- immediate || 016,将指令中的16bit马上数保存到地址为rt的通用寄存器的高16位。另外。地址为rt的通用寄存器的低16位使用0填充。

      4sllsllvsrasravsrlsrlv指令

      这6条指令的格式如图5-13所看到的,从图中能够发现这6条指令都是R类型指令。而且指令码都是6’b000000。也就是都是SPECIAL类,须要根据指令中0-5bit功能码的值进一步推断是哪一种指令。

自己动手写CPU之第五阶段(3)——MIPS指令集中的逻辑、移位与空指令

  •  当功能码是6’b000000,表示是sll指令,逻辑左移

      指令使用方法为:sll rd, rt, sa

      指令作用为:rd <- rt << sa (logic),将地址为rt的通用寄存器的值,向左移sa位。空出来的位置使用0填充。结果保存到地址为rd的通用寄存器中。

  •  当功能码是6’b000010,表示是srl指令。逻辑右移

      指令使用方法为:srl rd, rt, sa

      指令作用为:rd <- rt >> sa (logic),将地址为rt的通用寄存器的值,向右移sa位,空出来的位置使用0填充,结果保存到地址为rd的通用寄存器中。

  •  当功能码是6’b000011。表示是sra指令,算术右移

      指令使用方法为:sra rd, rt, sa

      指令作用为:rd <- rt >> sa (arithmetic),将地址为rt的通用寄存器的值,向右移sa位。空出来的位置使用rt[31]的值填充,结果保存到地址为rd的通用寄存器中。

  •  当功能码是6’b000100。表示是sllv指令,逻辑左移

      指令使用方法为:sllv rd, rt, rs

      指令作用为:rd <- rt << rs[4:0](logic)。将地址为rt的通用寄存器的值。向左移位,空出来的位置使用0填充,结果保存到地址为rd的通用寄存器中。移位位数由地址为rs的寄存器值的0-4bit确定。

  •  当功能码是6’b000110,表示是srlv指令。逻辑右移

      指令使用方法为:srlv rd, rt, rs

      指令作用为:rd <- rt >> rs[4:0](logic),将地址为rt的通用寄存器的值,向右移位,空出来的位置使用0填充。结果保存到地址为rd的通用寄存器中。

移位位数由地址为rs的寄存器值的0-4bit确定。

  •  当功能码是6’b000111,表示是srav指令,算术右移

      指令使用方法为:srav rd, rt, rs

      指令作用为:rd <- rt >> rs[4:0](arithmetic),将地址为rt的通用寄存器的值,向右移位。空出来的位置使用rt[31]填充,结果保存到地址为rd的通用寄存器中。

移位位数由地址为rs的寄存器值的0-4bit确定。

      总结来说。这六条移位操作指令能够分为两种情况:sllvsravsrlv3条指令的助记符最后有“v”。表示移位位数是通过寄存器的值确定的,sllsrasrl3条指令的助记符最后没有“v”,表示移位位数就是指令中6-10bitsa的值。

      5nopssnopsyncpref指令

      这4条指令的格式如图5-14所看到的。从图中能够发现nopssnopsync3条指令都是R类型指令,而且指令码都是6’b000000。也就是都是SPECIAL类。

自己动手写CPU之第五阶段(3)——MIPS指令集中的逻辑、移位与空指令

      更进一步,能够发现nopssnop两条指令的功能码都是6’b000000,与之前介绍的逻辑左移指令sll的功能码同样。这样在译码的时候会不会有冲突:nop指令的二进制码与sll $0,$0,0的二进制码一样,处理器怎样译码?ssnop指令的二进制码与sll $0,$0,1的二进制码一样,处理器怎样译码?

nop      =     sll $0,$0,0
ssnop    =     sll $0,$0,1

      事实上两者是等价的。sll指令向$0寄存器保存移位结果,实际不会有不论什么效果,由于不管向$0写不论什么数,其值始终为0,所以效果等同于什么都不做,这也正是空指令nopssnop的效果。所以nopssnop指令不用特意实现,全然能够当作特殊的逻辑左移指令sll


下一次将实现上面介绍的逻辑、移位、空指令,敬请关注!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/115924.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 卸载软件包命令_查看rpm包是否安装

    卸载软件包命令_查看rpm包是否安装可以先用rpm-q’xxx’或者rpm-qf’xxx/bin/xxxx.xx’来查询一下所属的rpm包的名字。然后用rpm-e’xxxxxx’来删之。’xxx/bin/xxxx.xx’是一个包中任意的文件’xxxxxx’是查询得到的rpm包的名称    rpm-e的时候后面的文件名不用加版本号 安全地卸载RPM卸载软件包,并不是简单地将原来安

    2022年9月22日
    3
  • acm总结帖_By AekdyCoin

    acm总结帖_By AekdyCoinacm总结帖_ByAekdyCoin各路大牛都在中国大陆的5个赛区结束以后纷纷发出了退役帖,总结帖,或功德圆满,或死不瞑目,而这或许又会造就明年的各种“炸尸”风波。为了考虑在发退役贴以后明年我也成为“僵尸”的可能性,于是改名曰“总结贴”,不提比赛细节,不提比赛流水账,权当是大学本科生涯中acm生活的点滴记录……(1)入门篇甲PS:以下内容…

    2022年7月23日
    15
  • 第四章:java 多线程volatile关键字 atomic类学习 java 原子性讲解,变量可见与不可见说明

    第四章:java 多线程volatile关键字 atomic类学习 java 原子性讲解,变量可见与不可见说明第四章:java 多线程volatile关键字 atomic类学习 java 原子性讲解,变量可见与不可见说明

    2022年4月23日
    43
  • Redis之压缩列表ziplist

    Redis是基于内存的nosql,有些场景下为了节省内存redis会用“时间”换“空间”。ziplist就是很典型的例子。ziplist是list键、hash键以及zset键的底层实现之一(3.0之后list键已经不直接用ziplist和linkedlist作为底层实现了,取而代之的是quicklist)这些键的常规底层实现如下:list键:双向链表 hash键:字典di…

    2022年4月9日
    80
  • web服务器监控工具[通俗易懂]

    web服务器监控工具[通俗易懂]监控你的WEB服务器或者WEB主机运行是否正常与健康是非常重要的。你要确保用户始终可以打开你的网站并且网速不慢。服务器监控工具允许你收集和分析有关你的Web服务器的数据。1.PerformanceCo-PilotPerformanceCo-Pilot,简称PCP,是一个系统性能和分析框架。它从多个主机整理数据并实时的分析,帮你识别不正常的表现模式。它也提供A

    2022年6月12日
    49
  • mpeg4标准包含{xvid\divx,h264\avc}

    mpeg4标准包含{xvid\divx,h264\avc}“MPEG-4由一系列的子标准组成,被称为部……………………………第二部(ISO/IEC14496-2):视讯:定义了一个对各种视觉信息(包括视讯,静止纹理,计算机合成图形等等)的编解码器。对视讯部分来说,众多”Profiles”中很常用的一种是AdvancedSimpleProfile(ASP),例如XviD编码就属于MPEG-4

    2022年9月18日
    1

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号