E. Riding in a Lift(Codeforces Round #274)「建议收藏」

E. Riding in a Lift(Codeforces Round #274)

大家好,又见面了,我是全栈君。

E. Riding in a Lift
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Imagine that you are in a building that has exactly n floors. You can move between the floors in a lift. Let’s number the floors from bottom to top with integers from 1 to n. Now you’re on the floor number a. You are very bored, so you want to take the lift. Floor number b has a secret lab, the entry is forbidden. However, you already are in the mood and decide to make k consecutive trips in the lift.

Let us suppose that at the moment you are on the floor number x (initially, you were on floor a). For another trip between floors you choose some floor with number y (y ≠ x) and the lift travels to this floor. As you cannot visit floor b with the secret lab, you decided that the distance from the current floor x to the chosen y must be strictly less than the distance from the current floor x to floor b with the secret lab. Formally, it means that the following inequation must fulfill: |x - y| < |x - b|. After the lift successfully transports you to floor y, you write down number y in your notepad.

Your task is to find the number of distinct number sequences that you could have written in the notebook as the result of k trips in the lift. As the sought number of trips can be rather large, find the remainder after dividing the number by 1000000007 (109 + 7).

Input

The first line of the input contains four space-separated integers nabk (2 ≤ n ≤ 50001 ≤ k ≤ 50001 ≤ a, b ≤ na ≠ b).

Output

Print a single integer — the remainder after dividing the sought number of sequences by 1000000007 (109 + 7).

Sample test(s)
input
5 2 4 1

output
2

input
5 2 4 2

output
2

input
5 3 4 1

output
0

Note

Two sequences p1, p2, …, pk and q1, q2, …, qk are distinct, if there is such integer j (1 ≤ j ≤ k), that pj ≠ qj.

Notes to the samples:

  1. In the first sample after the first trip you are either on floor 1, or on floor 3, because |1 - 2| < |2 - 4| and |3 - 2| < |2 - 4|.
  2. In the second sample there are two possible sequences: (1, 2)(1, 3). You cannot choose floor 3 for the first trip because in this case no floor can be the floor for the second trip.
  1. In the third sample there are no sought sequences, because you cannot choose the floor for the first trip.


上次的cf今天才补题o(╯□╰)o,给n层楼。在a层開始,不能在b层停,且当在x层去y层时。|x - y| < |x - b|,求运行k
 
次的方案数。

有两种情况,dp[i][j],i为第i次,j为当前停的层数。


 当a<b时,此时全部的x不会超过b,当第i次停在j层。第i-1次肯定在[0,(b+j-1)/2],左端点不难想到,右端点推导过程:

设第i-1次停在x层。则第i层全部大于x小于b的点都能够取。我们仅仅考虑小于x的点。则x-j<=b-x-1,

整理得:   x<=(b+j-1)/2; 所以转移方程为:dp[i][j]=(sum[i-1][(j+b-1)/2]-dp[i-1][j]+mod)%mod;

当a>b时,同理得
dp[i][j]=((sum[i-1][n]-sum[i-1][(j+b)/2]+mod)%mod-dp[i-1][j]+mod)%mod;

代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn=5000+100;
const int mod=1000000000+7;
int dp[maxn][maxn];
int sum[maxn][maxn];
int n;
void getsum(int x)
{
    for(int i=1;i<=n;i++)
    {
    sum[x][i]=(sum[x][i-1]+dp[x][i])%mod;
  //  printf("%I64d\n",sum[x][i]);
    }
}
int main()
{
    int a,b,k;
    scanf("%d%d%d%d",&n,&a,&b,&k);
    memset(dp,0,sizeof(dp));
    memset(sum,0,sizeof(sum));
    dp[0][a]=1;
    if(a<b)
    {
        getsum(0);
       for(int i=1;i<=k;i++)
       {
        for(int j=1;j<b;j++)
        {
           dp[i][j]=(sum[i-1][(j+b-1)/2]-dp[i-1][j]+mod)%mod;
          // printf("%I64d ",dp[i][j]);
        }
      // printf("\n");
        getsum(i);
       }
    }
    else
    {
        getsum(0);
        for(int i=1;i<=k;i++)
        {
            for(int j=b+1;j<=n;j++)
            {
                //printf("%d %d\n",sum[i-1])
                dp[i][j]=((sum[i-1][n]-sum[i-1][(j+b)/2]+mod)%mod-dp[i-1][j]+mod)%mod;
               // printf("%d ",dp[i][j]);
            }
            getsum(i);
        }
    }
    long long ans=0;
    for(int i=1;i<=n;i++)
    {
    ans=(ans+dp[k][i])%mod;
    //printf("%d ",dp[k][i]);
    }
    printf("%I64d\n",ans);
    return 0;
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/116125.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • vue 富文本编辑框_基于vue的富文本编辑器

    vue 富文本编辑框_基于vue的富文本编辑器1、下载插件npmiwangeditor–save插件官网地址:https://www.wangeditor.com/2、封装富文本组件<templatelang=”html”><divclass=”editor”><!–<divref=”toolbar”class=”toolbar”></div>–><divref=”editor”class=”text”></div

    2022年10月9日
    0
  • origin多因子柱状图双y轴_origin并列柱状图

    origin多因子柱状图双y轴_origin并列柱状图origin多因子柱状图方法与步骤打开软件,输入数据。其实做这个图的主要关键点就是数据在origin里面的摆放。横坐标X轴为每个指标,Y轴横着放每个组别的数据,为均值加减标准差的形式。选中每一列的标准差数值,设置为Y轴标准差形式选中数据,选择柱状图初始的图就出来了我们再对其进行标签的调整,将多余的删除,纵坐标标签改错。双击图层,去掉横纵坐标的次坐标。选中横纵坐标的字体,统一调整为新罗马字体22号。最后我们双击柱子,改成我们喜欢的颜色就可以了。这里我们可以

    2022年9月30日
    1
  • Pytest(1)安装与入门「建议收藏」

    Pytest(1)安装与入门「建议收藏」pytest介绍pytest是python的一种单元测试框架,与python自带的unittest测试框架类似,但是比unittest框架使用起来更简洁,效率更高。根据pytest的官方网站介绍,它

    2022年7月30日
    5
  • datagrip激活【最新永久激活】

    (datagrip激活)这是一篇idea技术相关文章,由全栈君为大家提供,主要知识点是关于2021JetBrains全家桶永久激活码的内容IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.html08G05E7DZH-eyJsaWN…

    2022年3月28日
    626
  • neokylin操作系统_linuxiso文件怎么安装

    neokylin操作系统_linuxiso文件怎么安装xjdlt于2017-04-0615:49:11发表:楼主这3G多,我在论坛上申请的为什么才1.85G?5q2m于2015-11-2922:09:20发表:官网登不上,资源又少,快疯了ttt105于2015-11-2510:35:02发表:谢谢了。学习一下了PlumLee于2015-11-1511:50:25发表:我来支持一下,试用一下。马踏飞燕于2015-1…

    2022年8月10日
    4
  • SAP Fiori refreshSecurityToken

    SAP Fiori refreshSecurityTokenCreatedbyWang,Jerry,lastmodifiedonMar26,2015要获取更多Jerry的原创文章,请关注公众号”汪子熙”:

    2025年7月11日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号