大家好,又见面了,我是全栈君。
int main(int argc, char **argv){ int fd_count = 0; struct pollfd ufds[4]; char *tmpdev; char* debuggable; char tmp[32]; int property_set_fd_init = 0; int signal_fd_init = 0; int keychord_fd_init = 0; //假设传入的argv[0]參数是ueventd,运行ueventd_main函数 if (!strcmp(basename(argv[0]), "ueventd")) return ueventd_main(argc, argv); /* clear the umask */ //假设是文件。文件权限为666,文件夹权限是777 umask(0); /* Get the basic filesystem setup we need put * together in the initramdisk on / and then we'll * let the rc file figure out the rest. */ //创建文件夹并挂载 mkdir("/dev", 0755); mkdir("/proc", 0755); mkdir("/sys", 0755); mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755"); mkdir("/dev/pts", 0755); mkdir("/dev/socket", 0755); mount("devpts", "/dev/pts", "devpts", 0, NULL); mount("proc", "/proc", "proc", 0, NULL); mount("sysfs", "/sys", "sysfs", 0, NULL); /* indicate that booting is in progress to background fw loaders, etc */ close(open("/dev/.booting", O_WRONLY | O_CREAT, 0000)); /* We must have some place other than / to create the * device nodes for kmsg and null, otherwise we won't * be able to remount / read-only later on. * Now that tmpfs is mounted on /dev, we can actually * talk to the outside world. */ open_devnull_stdio(); //初始化日志系统 klog_init(); //解析init.rc配置文件(这个是重点分析的) INFO("reading config file\n"); init_parse_config_file("/init.rc"); /* pull the kernel commandline and ramdisk properties file in */ import_kernel_cmdline(0, import_kernel_nv); /* don't expose the raw commandline to nonpriv processes */ chmod("/proc/cmdline", 0440); //读取/proc/cpuinfo得到机器hardware名称 get_hardware_name(hardware, &revision); snprintf(tmp, sizeof(tmp), "/init.%s.rc", hardware); //解析tmp 文件,也就是/init.<hardware>.rc文件 init_parse_config_file(tmp); //解析完上面两个rc文件之后得到非常多Action。 //这里运行名称为early-init的Action action_for_each_trigger("early-init", action_add_queue_tail); //触发内置的Action。第一个參数是函数指针,第二个參数是action的名称 queue_builtin_action(wait_for_coldboot_done_action, "wait_for_coldboot_done"); queue_builtin_action(property_init_action, "property_init"); queue_builtin_action(keychord_init_action, "keychord_init"); queue_builtin_action(console_init_action, "console_init"); queue_builtin_action(set_init_properties_action, "set_init_properties"); // 运行名称为init的action /* execute all the boot actions to get us started */ action_for_each_trigger("init", action_add_queue_tail); /* skip mounting filesystems in charger mode */ //假设正在充电则运行以下的action if (strcmp(bootmode, "charger") != 0) { action_for_each_trigger("early-fs", action_add_queue_tail); action_for_each_trigger("fs", action_add_queue_tail); action_for_each_trigger("post-fs", action_add_queue_tail); action_for_each_trigger("post-fs-data", action_add_queue_tail); } //触发内置Action queue_builtin_action(property_service_init_action, "property_service_init"); queue_builtin_action(signal_init_action, "signal_init"); queue_builtin_action(check_startup_action, "check_startup"); if (!strcmp(bootmode, "charger")) { action_for_each_trigger("charger", action_add_queue_tail); } else { action_for_each_trigger("early-boot", action_add_queue_tail); action_for_each_trigger("boot", action_add_queue_tail); } /* run all property triggers based on current state of the properties */ queue_builtin_action(queue_property_triggers_action, "queue_propety_triggers");#if BOOTCHART queue_builtin_action(bootchart_init_action, "bootchart_init");#endif//运行完上面初始化和触发action的过程之后进入一个死循环,运行Command for(;;) { int nr, i, timeout = -1; execute_one_command(); //假设service异常退出,重新启动它 restart_processes(); //监听来自property service事件,后面会介绍 if (!property_set_fd_init && get_property_set_fd() > 0) { ufds[fd_count].fd = get_property_set_fd(); ufds[fd_count].events = POLLIN; ufds[fd_count].revents = 0; fd_count++; property_set_fd_init = 1; } //监听来自signal事件 。signal是用来处理子进程退出时的操作,防止子进程编程僵尸进程 if (!signal_fd_init && get_signal_fd() > 0) { ufds[fd_count].fd = get_signal_fd(); ufds[fd_count].events = POLLIN; ufds[fd_count].revents = 0; fd_count++; signal_fd_init = 1; } //监听来自keychord设备事件 if (!keychord_fd_init && get_keychord_fd() > 0) { ufds[fd_count].fd = get_keychord_fd(); ufds[fd_count].events = POLLIN; ufds[fd_count].revents = 0; fd_count++; keychord_fd_init = 1; } //假设异常终止的service重新启动,设置等待时间 if (process_needs_restart) { timeout = (process_needs_restart - gettime()) * 1000; if (timeout < 0) timeout = 0; } if (!action_queue_empty() || cur_action) timeout = 0;#if BOOTCHART if (bootchart_count > 0) { if (timeout < 0 || timeout > BOOTCHART_POLLING_MS) timeout = BOOTCHART_POLLING_MS; if (bootchart_step() < 0 || --bootchart_count == 0) { bootchart_finish(); bootchart_count = 0; } }#endif //多路监听设备 nr = poll(ufds, fd_count, timeout); if (nr <= 0) continue; for (i = 0; i < fd_count; i++) { if (ufds[i].revents == POLLIN) { if (ufds[i].fd == get_property_set_fd()) handle_property_set_fd();//处理property service事件 else if (ufds[i].fd == get_keychord_fd()) handle_keychord();//处理keychord事件 else if (ufds[i].fd == get_signal_fd()) handle_signal();//处理signal事件 } } } return 0;}从第二部分開始分析
#on用来声明这是一个Action。early-init是该Action的触发条件,也是它的名称
on early-init
#运行命令
start ueventd
# create mountpoints
#运行命令
mkdir /mnt 0775 root system
//省略。。。
#service声明是这是一个Service,servicemanager 是Service名称,/system/bin/servicemanager是程序地址service servicemanager /system/bin/servicemanager#class、user等都是option class core user system group system critical onrestart restart zygote onrestart restart mediaservice zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server class main socket zygote stream 666 onrestart write /sys/android_power/request_state wake onrestart write /sys/power/state on onrestart restart media onrestart restart netd //....
on property:ro.debuggable=1 start console
exec <path> [ <argument> ]* 执行路径为path的命令,參数是argument
export <name> <value> 在全局环境变量中设在环境变量 <name>为<value>。
ifup <interface> 启动网络接口<interface>
import <filename> 解析一个init配置文件,扩展当前配置。
hostname <name> 设置主机名。
chmod <octal-mode> <path> 更改文件訪问权限。
chown <owner> <group> <path> 更改文件的全部者和组。
class_start <serviceclass> 启动全部指定服务类下的未执行服务。 class_stop <serviceclass> 停止指定服务类下的全部已执行的服务。 domainname <name> 设置域名。 insmod <path> 载入<path>中的模块。
mkdir <path> [mode] [owner] [group] 创建一个文件夹<path>, mount <type> <device> <dir> [ <mountoption> ]* 试图在文件夹<dir>挂载指定的设备 setprop <name> <value> 设置系统属性 <name> 为 <value>值. setrlimit <resource> <cur> <max> 设置<resource>的rlimit(资源限制)。 start <service> 启动指定服务(假设此服务还未执行)。 stop <service> 停止指定服务(假设此服务在执行中)。 symlink <target> <path> 创建一个指向<path>的软连接<target>。 sysclktz <mins_west_of_gmt> 设置系统时钟基准(0代表时钟滴答以格林威治平均时(GMT)为准) trigger <event> 触发一个事件。 write <path> <string> [ <string> ]* 打开路径为<path>的一个文件,并写入一个或多个字符串。
service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server
class main
socket zygote stream 666
onrestart write /sys/android_power/request_state wake
onrestart write /sys/power/state on
onrestart restart media
onrestart restart netd
critical: 说明这是一个对于设备关键的服务。假设一定时间退出多次,系统将会重新启动并进入recovery(恢复)模式。disabled:说明这个服务禁用,不会自己主动启动此服务。可是能够手动启动。 setenv <name> <value> :环境变量设置 在进程启动时将环境变量<name>设置为<value>。
socket <name> <type> <perm> [ <user> [ <group> ] ] 创建一个Uinx域的名为/dev/socket/<name> 的套接字,并传递它的文件描写叙述符给已启动的进程。<type> 必须是 "dgram"或"stream"。User 和 group默觉得0。
user <username> 在启动这个服务前改变切换到用户username,此时默觉得root。
group <groupname> [ <groupname> ]* 在启动这个服务前改变切换到用户组username,此时默觉得root。 oneshot:仅仅启动一次。一旦关闭就不再重新启动 class <name> 指定一个服务类别。全部同一类的服务能够同一时候启动和停止。默觉得"default"类服务。 onrestart <Command> 当服务重新启动,运行一个命令
int init_parse_config_file(const char *fn)
{
char *data;
//读取配置文件
data = read_file(fn, 0);
if (!data) return -1;
//重点是这个函数。解析配置文件
parse_config(fn, data);
DUMP();
return 0;
}
static void parse_config(const char *fn, char *s)
{
struct parse_state state;//保存解析状态
char *args[INIT_PARSER_MAXARGS];//存储參数
int nargs;//參数个数
nargs = 0;
state.filename = fn;//解析得文件路径
state.line = 0;//当前解析的行号
state.ptr = s;//当前解析的内容
state.nexttoken = 0;//当前解析是那种类型的行。有文件结束T_EOF,新的一行T_NEWLINE,參数T_TEXT
state.parse_line = parse_line_no_op;//parse_line_no_op是空操作
for (;;) {
switch (next_token(&state)) {
case T_EOF://文件结束
state.parse_line(&state, 0, 0);
return;
case T_NEWLINE://新的一行
state.line++;
if (nargs) {
int kw = lookup_keyword(args[0]);//是哪一个keyword
if (kw_is(kw, SECTION)) {//假设该keyword是section
state.parse_line(&state, 0, 0);
parse_new_section(&state, kw, nargs, args);//在这里才真正開始開始解析Section
} else {
state.parse_line(&state, nargs, args);
}
nargs = 0;
}
break;
case T_TEXT:
if (nargs < INIT_PARSER_MAXARGS) {
args[nargs++] = state.text;
}
break;
}
}
}
void parse_new_section(struct parse_state *state, int kw,int nargs, char **args)
{
printf("[ %s %s ]\n", args[0],nargs > 1 ? args[1] : "");
switch(kw) {
case K_service://假设是Service的Section,開始解析Service
state->context = parse_service(state, nargs, args);//保存调用过parse_service的service
if (state->context) {
state->parse_line = parse_line_service;//parse_line_service 才是真正的解析并填充Service函数
return;
}
break;
case K_on://假设是Action的Section。開始解析Action
state->context = parse_action(state, nargs, args);//保存调用过parse_action的action
if (state->context) {
state->parse_line = parse_line_action;//parse_line_action才是真正的解析并填充Action函数
return;
}
break;
case K_import:
if (nargs != 2) {
ERROR("single argument needed for import\n");
} else {
int ret = init_parse_config_file(args[1]);
if (ret)
ERROR("could not import file %s\n", args[1]);
}
}
state->parse_line = parse_line_no_op;
}
struct service {
/* list of all services */
//用于将结构体连接成一个双向链表。init中有一个全局变量service_list,专门保存解析后的service
struct listnode slist;//用于将结构体连接成一个双向链表,init中有一个全局变量
const char *name;//名称
const char *classname;//classname,默认是default
unsigned flags;//属性标志
pid_t pid;//进程号
time_t time_started; /* time of last start 上次启动时间 */
time_t time_crashed; /* first crash within inspection window 上次异常退出时间 */
int nr_crashed; /* number of times crashed within window 异常退出次数*/
uid_t uid;//用户id
gid_t gid;//用户组id
gid_t supp_gids[NR_SVC_SUPP_GIDS];
size_t nr_supp_gids;
//service使用的socket
struct socketinfo *sockets;
//service环境变量
struct svcenvinfo *envvars;
//service中的onrestart是一个option,可是它后面是一系列的command,能够看做是一个action
struct action onrestart; /* Actions to execute on restart. */
/* keycodes for triggering this service via /dev/keychord */
//和keychord有关的
int *keycodes;
int nkeycodes;
int keychord_id;
//io优先级
int ioprio_class;
int ioprio_pri;
//參数个数
int nargs;
/* "MUST BE AT THE END OF THE STRUCT" */
//參数列表
char *args[1];
}
struct listnode
{
struct listnode * next;
struct listnode * prev;
};
void list_init(struct listnode *node)
{
node->next = node;
node->prev = node;
}
void list_add_tail(struct listnode *head, struct listnode *item)
{
item->next = head;
item->prev = head->prev;
head->prev->next = item;
head->prev = item;
}
static void *parse_service(struct parse_state *state, int nargs, char **args)
{
struct service *svc;//定义的service结构体,用来保存解析出来的service
//异常处理代码
if (nargs < 3) {
parse_error(state, "services must have a name and a program\n");
return 0;
}
if (!valid_name(args[1])) {
parse_error(state, "invalid service name '%s'\n", args[1]);
return 0;
}
svc = service_find_by_name(args[1]);
if (svc) {
parse_error(state, "ignored duplicate definition of service '%s'\n", args[1]);
return 0;
}
nargs -= 2;
svc = calloc(1, sizeof(*svc) + sizeof(char*) * nargs);//为Service分配内存空间
if (!svc) {
parse_error(state, "out of memory\n");
return 0;
}
为svc结构体填充数据赋值
svc->name = args[1];
svc->classname = "default";//默觉得default类比
memcpy(svc->args, args + 2, sizeof(char*) * nargs);
svc->args[nargs] = 0;
svc->nargs = nargs;
svc->onrestart.name = "onrestart";
//Service中的onrestart 是Action类型的链表。初始化该链表
list_init(&svc->onrestart.commands);
//将service中的slist增加到service_list 中
list_add_tail(&service_list, &svc->slist);
return svc;
}
parse_line_service完毕
static void parse_line_service(struct parse_state *state, int nargs, char **args)
{
struct service *svc = state->context;//取出刚才创建的service
struct command *cmd;
int i, kw, kw_nargs;
if (nargs == 0) {
return;
}
svc->ioprio_class = IoSchedClass_NONE;//设置IO优先级
kw = lookup_keyword(args[0]);//配置service中的option关键字
switch (kw) {
//......
case K_onrestart://处理onrestart选项
nargs--;
args++;
kw = lookup_keyword(args[0]);
if (!kw_is(kw, COMMAND)) {//假设onrestart 选项后面不是command 提示错误
parse_error(state, "invalid command '%s'\n", args[0]);
break;
}
kw_nargs = kw_nargs(kw);
if (nargs < kw_nargs) {
parse_error(state, "%s requires %d %s\n", args[0], kw_nargs - 1,
kw_nargs > 2 ? "arguments" : "argument");
break;
}
//service中onrestart option的command序列创建过程
cmd = malloc(sizeof(*cmd) + sizeof(char*) * nargs);
cmd->func = kw_func(kw);
cmd->nargs = nargs;
memcpy(cmd->args, args, sizeof(char*) * nargs);
list_add_tail(&svc->onrestart.commands, &cmd->clist);
break;
case K_critical:
svc->flags |= SVC_CRITICAL;
break;
case K_setenv: { /* name value */
struct svcenvinfo *ei;
if (nargs < 2) {
parse_error(state, "setenv option requires name and value arguments\n");
break;
}
ei = calloc(1, sizeof(*ei));
if (!ei) {
parse_error(state, "out of memory\n");
break;
}
ei->name = args[1];
ei->value = args[2];
ei->next = svc->envvars;
svc->envvars = ei;
break;
}
//假设须要创建socket
case K_socket: {/* name type perm [ uid gid ] */
struct socketinfo *si;
if (nargs < 4) {
parse_error(state, "socket option requires name, type, perm arguments\n");
break;
}
if (strcmp(args[2],"dgram") && strcmp(args[2],"stream")
&& strcmp(args[2],"seqpacket")) {
parse_error(state, "socket type must be 'dgram', 'stream' or 'seqpacket'\n");
break;
}
si = calloc(1, sizeof(*si));
if (!si) {
parse_error(state, "out of memory\n");
break;
}
si->name = args[1];
si->type = args[2];
si->perm = strtoul(args[3], 0, 8);
if (nargs > 4)
si->uid = decode_uid(args[4]);
if (nargs > 5)
si->gid = decode_uid(args[5]);
si->next = svc->sockets;
svc->sockets = si;
break;
}
...
default:
parse_error(state, "invalid option '%s'\n", args[0]);
}
}
struct action {
/* node in list of all actions */
struct listnode alist;//用来存储全部的Action指针
/* node in the queue of pending actions */
struct listnode qlist;//用来存储即将运行的Action指针
/* node in list of actions for a trigger */
struct listnode tlist;//用来存储等待触发的Action节点
unsigned hash;
const char *name;//Action的名称
struct listnode commands;//Action中的command命令
struct command *current;
};
struct command{ /* list of commands in an action */ struct listnode clist;//一个Action中的command队列 int (*func)(int nargs, char **args);//command相应的函数指针 int nargs;//函数參数个数 char *args[1];//函数參数};static void *parse_action(struct parse_state *state, int nargs, char **args)
{
struct action *act;
if (nargs < 2) {
parse_error(state, "actions must have a trigger\n");
return 0;
}
if (nargs > 2) {
parse_error(state, "actions may not have extra parameters\n");
return 0;
}
act = calloc(1, sizeof(*act));//为action结构体分配内存
act->name = args[1];//填充action的名称
list_init(&act->commands);//初始化action中的command指针队列
list_add_tail(&action_list, &act->alist);//将Action指针存放在action_list队列中
/* XXX add to hash */
return act;
}
static void parse_line_action(struct parse_state* state, int nargs, char **args)
{
struct command *cmd;
struct action *act = state->context;//action的引用
int (*func)(int nargs, char **args);
int kw, n;
if (nargs == 0) {
return;
}
kw = lookup_keyword(args[0]);
if (!kw_is(kw, COMMAND)) {//匹配是否是Command,假设不是。提示错误
parse_error(state, "invalid command '%s'\n", args[0]);
return;
}
n = kw_nargs(kw);
if (nargs < n) {
parse_error(state, "%s requires %d %s\n", args[0], n - 1,
n > 2 ? "arguments" : "argument");
return;
}
cmd = malloc(sizeof(*cmd) + sizeof(char*) * nargs);//为Command分配内存
cmd->func = kw_func(kw);//获取command相应的函数指针
cmd->nargs = nargs;
memcpy(cmd->args, args, sizeof(char*) * nargs);
list_add_tail(&act->commands, &cmd->clist);//command增加到action的command列表
}
以下看一下启动的流程
//这里触发名称为early-init的Action action_for_each_trigger("early-init", action_add_queue_tail); //触发内置的Action。第一个參数是函数指针。第二个參数是action的名称 queue_builtin_action(wait_for_coldboot_done_action, "wait_for_coldboot_done"); queue_builtin_action(property_init_action, "property_init"); queue_builtin_action(keychord_init_action, "keychord_init"); queue_builtin_action(console_init_action, "console_init"); queue_builtin_action(set_init_properties_action, "set_init_properties");void action_for_each_trigger(const char *trigger,void (*func)(struct action *act))
{
struct listnode *node;
struct action *act;
list_for_each(node, &action_list) {//实际就是遍历action_list
act = node_to_item(node, struct action, alist);
if (!strcmp(act->name, trigger)) {
func(act);
}
}
}
#define list_for_each(node, list) \
for (node = (list)->next; node != (list); node = node->next)
#define node_to_item(node, container, member) \
(container *) (((char*) (node)) - offsetof(container, member))
void action_add_queue_tail(struct action *act)
{ //将action中的qlist增加到action_queue中,当中qlist是中即将运行的action 。
list_add_tail(&action_queue, &act->qlist);
}
中。并没有启动action的操作。
void queue_builtin_action(int (*func)(int nargs, char **args), char *name)
{
struct action *act;
struct command *cmd;
act = calloc(1, sizeof(*act));//action分配内存
act->name = name;//设置action名称
list_init(&act->commands);//初始化action的command链表
cmd = calloc(1, sizeof(*cmd));//为链表分配内存
cmd->func = func;//填充函数运行
cmd->args[0] = name;//填充函数名称
list_add_tail(&act->commands, &cmd->clist);//将command的clist增加到action的command链表中
list_add_tail(&action_list, &act->alist);//将action的alist增加到action_list 链表中
action_add_queue_tail(act);也是调用action_add_queue_tail。将创建的action增加到action_queue 链表中
}
for(;;) {
....
execute_one_command();//就是这里启动了解析的action
//假设service异常退出。重新启动它
restart_processes();
...
}
void execute_one_command(void)
{
int ret;
//取出action中的command,运行action就是运行command
if (!cur_action || !cur_command || is_last_command(cur_action, cur_command)) {
cur_action = action_remove_queue_head();
cur_command = NULL;
if (!cur_action)
return;
INFO("processing action %p (%s)\n", cur_action, cur_action->name);
cur_command = get_first_command(cur_action);
} else {
cur_command = get_next_command(cur_action, cur_command);
}
if (!cur_command)
return;
//调用command中的func函数
ret = cur_command->func(cur_command->nargs, cur_command->args);
INFO("command '%s' r=%d\n", cur_command->args[0], ret);
}
当中command的func变量在parse_line_action函数赋值,command命令和相应的函数的相应关系在Keywords.h文件里
on early-init write /proc/1/oom_adj -16 start ueventd
int do_write(int nargs, char **args){ const char *path = args[1]; const char *value = args[2]; ... //调用库函数write_file,想 /proc/1/oom_adj 文件里写入16 return write_file(path, value);}int do_start(int nargs, char **args){ struct service *svc; //找到servicename是ueventd 的service svc = service_find_by_name(args[1]); if (svc) { //调用service_start 函数 service_start(svc, NULL); } return 0;}void service_start(struct service *svc, const char *dynamic_args){ struct stat s; pid_t pid; int needs_console; int n; /* starting a service removes it from the disabled or reset * state and immediately takes it out of the restarting * state if it was in there */ svc->flags &= (~(SVC_DISABLED|SVC_RESTARTING|SVC_RESET)); svc->time_started = 0; /* running processes require no additional work -- if * they're in the process of exiting, we've ensured * that they will immediately restart on exit, unless * they are ONESHOT */ if (svc->flags & SVC_RUNNING) { return; } needs_console = (svc->flags & SVC_CONSOLE) ? 1 : 0; .... //创建子进程 pid = fork(); if (pid == 0) { struct socketinfo *si; struct svcenvinfo *ei; char tmp[32]; int fd, sz; //将属性信息增加到环境变量 if (properties_inited()) { get_property_workspace(&fd, &sz); sprintf(tmp, "%d,%d", dup(fd), sz); add_environment("ANDROID_PROPERTY_WORKSPACE", tmp); } for (ei = svc->envvars; ei; ei = ei->next) add_environment(ei->name, ei->value); for (si = svc->sockets; si; si = si->next) { int socket_type = ( !strcmp(si->type, "stream") ? SOCK_STREAM : (!strcmp(si->type, "dgram") ? SOCK_DGRAM : SOCK_SEQPACKET)); //创建socket int s = create_socket(si->name, socket_type, si->perm, si->uid, si->gid); if (s >= 0) { publish_socket(si->name, s); } } if (svc->ioprio_class != IoSchedClass_NONE) { if (android_set_ioprio(getpid(), svc->ioprio_class, svc->ioprio_pri)) { ERROR("Failed to set pid %d ioprio = %d,%d: %s\n", getpid(), svc->ioprio_class, svc->ioprio_pri, strerror(errno)); } } //pid<0说明创建子进程失败,没有启动服务 if (pid < 0) { ERROR("failed to start '%s'\n", svc->name); svc->pid = 0; return; } //再设置service的启动信息 svc->time_started = gettime();//service的启动时间 svc->pid = pid;//service的进程id svc->flags |= SVC_RUNNING;//service的状态 if (properties_inited()) //更新状态 notify_service_state(svc->name, "running");}
static void service_start_if_not_disabled(struct service *svc)
{
if (!(svc->flags & SVC_DISABLED)) {
service_start(svc, NULL);//调用了service_start函数
}
}
int do_class_start(int nargs, char **args){ /* Starting a class does not start services * which are explicitly disabled. They must * be started individually. */ service_for_each_class(args[1], service_start_if_not_disabled); return 0;}Keywords.h文件里相应哪一个command呢?
on boot# basic network init # set RLIMIT_NICE to allow priorities from 19 to -20 ...# Memory management. Basic kernel parameters, and allow the high# level system server to be able to adjust the kernel OOM driver# paramters to match how it is managing things. ...# Define TCP buffer sizes for various networks# ReadMin, ReadInitial, ReadMax, WriteMin, WriteInitial, WriteMax, ...# Set this property so surfaceflinger is not started by system_init ... class_start core class_start main
service servicemanager /system/bin/servicemanager class core ...service vold /system/bin/vold class core ...service netd /system/bin/netd class main ...service debuggerd /system/bin/debuggerd class mainservice ril-daemon /system/bin/rild class main ...service surfaceflinger /system/bin/surfaceflinger class main ...service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server class main ...service drm /system/bin/drmserver class main ...service media /system/bin/mediaserver class main ...service bootanim /system/bin/bootanimation class main ...service dbus /system/bin/dbus-daemon --system --nofork class main ...service installd /system/bin/installd class main ...service flash_recovery /system/etc/install-recovery.sh class main ...service keystore /system/bin/keystore /data/misc/keystore class main ...
if (!strcmp(bootmode, "charger")) { action_for_each_trigger("charger", action_add_queue_tail); } else { action_for_each_trigger("early-boot", action_add_queue_tail); action_for_each_trigger("boot", action_add_queue_tail); }queue_builtin_action(property_init_action, "property_init"); queue_builtin_action(property_service_init_action, "property_service_init");
static int property_init_action(int nargs, char **args)
{
bool load_defaults = true;
INFO("property init\n");
if (!strcmp(bootmode, "charger"))
load_defaults = false;
property_init(load_defaults);
return 0;
}
void property_init(bool load_defaults)
{
init_property_area();//初始化存储区域
if (load_defaults)
load_properties_from_file(PROP_PATH_RAMDISK_DEFAULT);//载入配置文件
}
static int property_service_init_action(int nargs, char **args)
{
/* read any property files on system or data and
* fire up the property service. This must happen
* after the ro.foo properties are set above so
* that /data/local.prop cannot interfere with them.
*/
start_property_service();
return 0;
}
system/core/init/Property_service.c中
start_property_service函数
void start_property_service(void)
{
int fd;
//载入其它配置文件
load_properties_from_file(PROP_PATH_SYSTEM_BUILD);
load_properties_from_file(PROP_PATH_SYSTEM_DEFAULT);
load_properties_from_file(PROP_PATH_LOCAL_OVERRIDE);
/* Read persistent properties after all default values have been loaded. */
load_persistent_properties();
//创建一个socket等待client请求
fd = create_socket(PROP_SERVICE_NAME, SOCK_STREAM, 0666, 0, 0);
if(fd < 0) return;
fcntl(fd, F_SETFD, FD_CLOEXEC);
fcntl(fd, F_SETFL, O_NONBLOCK);
//监听fd的连接请求。最大请求个数是8
listen(fd, 8);
property_set_fd = fd;
}
在sytem/core/libcutils/Properites.c中的property_set函数
int property_set(const char *key, const char *value){ return __system_property_set(key, value);}int __system_property_set(const char *key, const char *value)
{
int err;
int tries = 0;
int update_seen = 0;
prop_msg msg;
..
通过send_prop_msg 函数来他发送消息
err = send_prop_msg(&msg);
if(err < 0) {
return err;
}
return 0;
}
static int send_prop_msg(prop_msg *msg)
{
struct pollfd pollfds[1];
struct sockaddr_un addr;
socklen_t alen;
size_t namelen;
int s;
int r;
int result = -1;
//创建socket
s = socket(AF_LOCAL, SOCK_STREAM, 0);
if(s < 0) {
return result;
}
//为socket设置数据
memset(&addr, 0, sizeof(addr));
namelen = strlen(property_service_socket);
strlcpy(addr.sun_path, property_service_socket, sizeof addr.sun_path);
addr.sun_family = AF_LOCAL;
alen = namelen + offsetof(struct sockaddr_un, sun_path) + 1;
//连接socket
if(TEMP_FAILURE_RETRY(connect(s, (struct sockaddr *) &addr, alen) < 0)) {
close(s);
return result;
}
//发送消息
r = TEMP_FAILURE_RETRY(send(s, msg, sizeof(prop_msg), 0));
if(r == sizeof(prop_msg)) {
// We successfully wrote to the property server but now we
// wait for the property server to finish its work. It
// acknowledges its completion by closing the socket so we
// poll here (on nothing), waiting for the socket to close.
// If you 'adb shell setprop foo bar' you'll see the POLLHUP
// once the socket closes. Out of paranoia we cap our poll
// at 250 ms.
pollfds[0].fd = s;
pollfds[0].events = 0;
r = TEMP_FAILURE_RETRY(poll(pollfds, 1, 250 /* ms */));
if (r == 1 && (pollfds[0].revents & POLLHUP) != 0) {
result = 0;
} else {
// Ignore the timeout and treat it like a success anyway.
// The init process is single-threaded and its property
// service is sometimes slow to respond (perhaps it's off
// starting a child process or something) and thus this
// times out and the caller thinks it failed, even though
// it's still getting around to it. So we fake it here,
// mostly for ctl.* properties, but we do try and wait 250
// ms so callers who do read-after-write can reliably see
// what they've written. Most of the time.
// TODO: fix the system properties design.
result = 0;
}
}
close(s);
return result;
}
for(;;) {
int nr, i, timeout = -1;
execute_one_command();
restart_processes();
//指定了三类事件的监听get_property_set_fd、get_signal_fd、get_keychord_fd
// 这就是监听来自client请求属性服务的信号
if (!property_set_fd_init && get_property_set_fd() > 0) {
ufds[fd_count].fd = get_property_set_fd();
ufds[fd_count].events = POLLIN;
ufds[fd_count].revents = 0;
fd_count++;
property_set_fd_init = 1;
}
//子进程退出时的信号,能够回收子进程资源或者重新启动子进程
if (!signal_fd_init && get_signal_fd() > 0) {
ufds[fd_count].fd = get_signal_fd();
ufds[fd_count].events = POLLIN;
ufds[fd_count].revents = 0;
fd_count++;
signal_fd_init = 1;
}
//keychord 信号
if (!keychord_fd_init && get_keychord_fd() > 0) {
ufds[fd_count].fd = get_keychord_fd();
ufds[fd_count].events = POLLIN;
ufds[fd_count].revents = 0;
fd_count++;
keychord_fd_init = 1;
}
if (process_needs_restart) {
timeout = (process_needs_restart - gettime()) * 1000;
if (timeout < 0)
timeout = 0;
}
if (!action_queue_empty() || cur_action)
timeout = 0;
...
//使用poll系统调用监听上述三类事件的信号
nr = poll(ufds, fd_count, timeout);
if (nr <= 0)
continue;
for (i = 0; i < fd_count; i++) {
if (ufds[i].revents == POLLIN) {
if (ufds[i].fd == get_property_set_fd())
//属性服务信号处理函数
handle_property_set_fd();
else if (ufds[i].fd == get_keychord_fd())
//keychord信号处理函数
handle_keychord();
else if (ufds[i].fd == get_signal_fd())
//子进程退出信号处理函数
handle_signal();
}
}
}
发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/116514.html原文链接:https://javaforall.net
